Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(6): e67344, 2013.
Article in English | MEDLINE | ID: mdl-23826272

ABSTRACT

Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (sequence) learning task. Our results showed (1) a significant increase in the slope of the learning curve and (2) a significant improvement in motor performance at retention for 1.5 mA atDCS as compared to sham tDCS. No significant differences were reported between 1 mA atDCS and sham tDCS; and between 1.5 mA atDCS and 1 mA atDCS.


Subject(s)
Learning/physiology , Motor Activity/physiology , Transcranial Magnetic Stimulation , Female , Humans , Male , Sleep/physiology , Task Performance and Analysis , Young Adult
2.
J Cogn Neurosci ; 23(11): 3456-69, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21452954

ABSTRACT

Unimanual motor tasks, specifically movements that are complex or require high forces, activate not only the contralateral primary motor cortex (M1) but evoke also ipsilateral M1 activity. This involvement of ipsilateral M1 is asymmetric, such that the left M1 is more involved in motor control with the left hand than the right M1 in movements with the right hand. This suggests that the left hemisphere is specialized for movement control of either hand, although previous experiments tested mostly right-handed participants. In contrast, research on hemispheric asymmetries of ipsilateral M1 involvement in left-handed participants is relatively scarce. In the present study, left- and right-handed participants performed complex unimanual movements, whereas TMS was used to disrupt the activity of ipsilateral M1 in accordance with a "virtual lesion" approach. For right-handed participants, more disruptions were induced when TMS was applied over the dominant (left) M1. For left-handed participants, two subgroups could be distinguished, such that one group showed more disruptions when TMS was applied over the nondominant (left) M1, whereas the other subgroup showed more disruptions when the dominant (right) M1 was stimulated. This indicates that functional asymmetries of M1 involvement during ipsilateral movements are influenced by both hand dominance as well as left hemisphere specialization. We propose that the functional asymmetries in ipsilateral M1 involvement during unimanual movements are primarily attributable to asymmetries in the higher-order areas, although the contribution of transcallosal pathways and ipsilateral projections cannot be completely ruled out.


Subject(s)
Executive Function/physiology , Functional Laterality/physiology , Hand , Motor Cortex/physiology , Movement/physiology , Adult , Analysis of Variance , Biophysics , Electric Stimulation , Female , Humans , Inhibition, Psychological , Male , Motor Cortex/injuries , Neural Pathways/physiology , Neuropsychological Tests , Psychomotor Performance , Reaction Time , Transcranial Magnetic Stimulation/adverse effects , Young Adult
3.
PLoS One ; 6(3): e17742, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21408031

ABSTRACT

Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi)) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1(ipsi) would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi) facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi) only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi) than in the right. In experiment 2, we tested whether the modulations of M1(ipsi) facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi). We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.


Subject(s)
Dominance, Cerebral/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Movement/physiology , Task Performance and Analysis , Electromyography , Female , Humans , Inhibitory Postsynaptic Potentials/physiology , Time Factors , Transcranial Magnetic Stimulation , Wrist/physiology , Young Adult
4.
Cereb Cortex ; 20(12): 2842-51, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20219774

ABSTRACT

The premotor cortex (PMC) is functionally lateralized, such that the left PMC is activated for unimanual movements of either hand, whereas the right PMC is particularly active during complex bimanual movements. Here we ask the question whether the high activation of right PMC in the bimanual context reflects either hemispheric specialization or handedness. Left- and right-handed subjects performed a bimanual antiphase tapping task at different frequencies while transcranial magnetic stimulation (TMS) was used to temporarily disrupt left versus right PMC during complex bimanual movements. For both handedness groups, more disruptions were induced when TMS was applied over the motor nondominant PMC than over the motor dominant PMC or when sham-TMS was used. In a second experiment, right-handers performed complex unimanual tapping with either hand, while TMS was applied to the PMC in both hemispheres. The novel result was that the high susceptibility of the motor nondominant PMC was specific to the bimanual context, indicating that hemispheric asymmetries of the PMC depend on the bimanual versus unimanual nature of the motor task. We hypothesize that asymmetries of PMC involvement in bimanual control reflect interhemispheric interactions, whereby the motor nondominant PMC appears to prevent motor cross talk arising from the dominant hemisphere.


Subject(s)
Functional Laterality/physiology , Motor Cortex/physiology , Movement/physiology , Adolescent , Electromyography , Female , Humans , Male , Neural Pathways/physiology , Transcranial Magnetic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...