Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 42(1): 29-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20869257

ABSTRACT

This paper describes a methodology based on hollow-cone dark-field (HCDF) transmission electron microscopy (TEM) to study dislocation structures in both nano- and micro-crystalline grains. Although the conventional approach based on a two-beam condition has been commonly used to acquire weak-beam dark-field (WBDF) TEM images for dislocation structure characterization, it is very challenging to employ this technique to study nanocrystalline materials, especially when the grains are less than 100 nm in diameter. Compared to the conventional two-beam approach, the method described in this paper is more conducive for obtaining high-quality WBDF-TEM images. Furthermore, the method is suitable for studying samples with both nanocrystalline and coarse-grains. A trimodal Al metal-matrix-composite (MMC) consisting of B(4)C particles, a nanocrystalline Al (NC-Al) phase, and a coarse-grained Al (CG-Al) phase has been reported to exhibit an extremely high strength and tailorable ductility. The dislocations in both NC-Al and CG-Al phases of the trimodal Al MMCs at different fabrication stages were examined using the HCDF method described. The influence of the dislocation density in both NC-Al and CG-Al phases on the strength and ductility of the composite is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...