Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 41(7): 071907, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24989385

ABSTRACT

PURPOSE: Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. METHODS: The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. RESULTS: ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. CONCLUSIONS: A patient-specific 4D digital phantom allows for realistic simulation of mean values and standard deviation in perfusion data and makes it possible to retrospectively study how the interaction of patient hemodynamics and scan parameters affects CT perfusion values.


Subject(s)
Brain/diagnostic imaging , Computer Simulation , Models, Biological , Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation , Adult , Aged , Aged, 80 and over , Artifacts , Brain/physiopathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Cerebrovascular Circulation , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Hemodynamics , Humans , Male , Middle Aged , Radiation Dosage , Software , Tomography, X-Ray Computed/methods , White Matter/diagnostic imaging , White Matter/physiopathology
2.
Prog Biophys Mol Biol ; 103(2-3): 262-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20869389

ABSTRACT

Statistical shape models (SSM) are widely used in medical image analysis to represent variability in organ shape. However, representing subject-specific soft-tissue motion using this technique is problematic for applications where imaging organ changes in an individual is not possible or impractical. One solution is to synthesise training data by using biomechanical modelling. However, for many clinical applications, generating a biomechanical model of the organ(s) of interest is a non-trivial task that requires a significant amount of user-interaction to segment an image and create a finite element mesh. In this study, we investigate the impact of reducing the effort required to generate SSMs and the accuracy with which such models can predict tissue displacements within the prostate gland due to transrectal ultrasound probe pressure. In this approach, the finite element mesh is based on a simplified geometric representation of the organs. For example, the pelvic bone is represented by planar surfaces, or the number of distinct tissue compartments is reduced. Such representations are much easier to generate from images than a geometrically accurate mesh. The difference in the median root-mean-square displacement error between different SSMs of prostate was <0.2 mm. We conclude that reducing the geometric complexity of the training model in this way made little difference to the absolute accuracy of SSMs to recover tissue displacements. The implication is that SSMs of organ motion based on simulated training data may be generated using simplified geometric representations, which are much more compatible with the time constraints of clinical workflows.


Subject(s)
Computer Simulation , Models, Statistical , Prostate/physiology , Radiographic Image Enhancement/methods , Biomechanical Phenomena , Humans , Male , Motion , Prostate/diagnostic imaging , Prostate/pathology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...