Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 37(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27795299

ABSTRACT

Autocrine or paracrine signaling by beta interferon (IFN-ß) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-ß is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-ß was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-ß expression. Instead, MSK1 and -2 inhibit IFN-ß expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-ß mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-ß: first, JNK-mediated activation of c-jun, which binds to the IFN-ß promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-ß mRNA.


Subject(s)
Interferon-beta/metabolism , Macrophages/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Communication , Cells, Cultured , Gene Expression Regulation/drug effects , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Mice , Phosphorylation , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...