Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 31(7): 692-694, 2018 07.
Article in English | MEDLINE | ID: mdl-29432053

ABSTRACT

The Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi. However, most of the current Alternaria genome assemblies are highly fragmented, thereby hampering the identification of genes that are involved in causing disease. Here, we report a gapless genome assembly of A. solani, the causal agent of early blight in tomato and potato. The genome assembly is a significant step toward a better understanding of pathogenicity of A. solani.


Subject(s)
Alternaria/genetics , Genome, Fungal , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Solanum tuberosum/microbiology
2.
Phytopathology ; 93(4): 382-90, 2003 Apr.
Article in English | MEDLINE | ID: mdl-18944351

ABSTRACT

ABSTRACT The population structure of Phytophthora infestans in the Toluca Valley of central Mexico was assessed using 170 isolates collected from cultivated potatoes and the native wild Solanum spp., S. demissum and S. xendinense. All isolates were analyzed for mitochondrial DNA (mtDNA) haplotype and amplified fragment length polymorphism (AFLP) multi-locus fingerprint genotype. Isolate samples were monomorphic for mtDNA haplotype because all isolates tested were of the Ia haplotype. A total of 158 multilocus AFLP genotypes were identified among the 170 P. infestans isolates included in this study. P. infestans populations sampled in the Toluca Valley in 1997 were highly variable and almost every single isolate represented a unique genotype based on the analysis of 165 AFLP marker loci. Populations of P. infestans collected from the commercial potato-growing region in the valley, the subsistence potato production area along the slopes of the Nevado de Toluca, and the native Solanum spp. on the forested slopes of the volcano showed a high degree of genetic diversity. The number of polymorphic loci varied from 20.0 to 62.4% for isolates collected from the field station and wild Solanum spp. On average, 81.8% (135) of the AFLP loci were polymorphic. Hetero-zygosity varied between 7.7 and 19.4%. Significant differentiation was found at the population level between strains originating from cultivated potatoes and wild Solanum spp. (P = 0.001 to 0.022). Private alleles were observed in individual isolates collected from all three populations, with numbers of unique dominant alleles varying from 9 to 16 for isolates collected from commercial potato crops and native Solanum spp., respectively. Four AFLP markers were exclusively found present in isolates collected from S. demissum. Indirect estimation of gene flow between populations indicated restricted gene flow between both P. infestans populations from cultivated potatoes and wild Solanum hosts. There was no evidence found for the presence of substructuring at the subpopulation (field) level. We hypothesize that population differentiation and genetic isolation of P. infestans in the Toluca Valley is driven by host-specific factors (i.e., R-genes) widely distributed in wild Solanum spp. and random genetic drift.

SELECTION OF CITATIONS
SEARCH DETAIL
...