Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 358: 120696, 2024 May.
Article in English | MEDLINE | ID: mdl-38614003

ABSTRACT

The offshore Multi-use Setting (MUS) is a concept that aims to co-locate marine industrial activities, including wind farms and aquaculture. MUS is considered an innovative approach to promoting efficiency in space and resource use whilst contributing global policy priorities. However, the impacts of MUS development across social, economic, and environmental domains are uncertain, hindering the commercialisation of the concept. In this study, we initially demonstrate the potential consequences of co-locating seaweed aquaculture and a wind farm as a step towards MUS. Using a hypothetical case study and modified Delphi methodology, 14 subject matter experts predicted potential outcomes across social and environmental objectives. Five Cognitive maps and impact tables of 58 potential consequences were generated based on experts' perspective on co-locating seaweed aquaculture and a wind farm. The findings highlight the potential to exasperate pressures in the area, including those already attributed to wind farm operations, such as species mortality and stakeholder conflict. However, it may also enhance social-ecological conditions, such as resource provisioning and promoting habitat functionality in the region, through the addition of seaweed aquaculture. The cognitive maps demonstrate the complexity of managing MUS implementation, where high degree of variability and uncertainty about the outcomes is present. The findings of this study provide the vital entry point to performing further integrative assessment and modelling approaches, such as probabilistic analysis and simulations, in support of MUS decision-making. The research also strongly recommends alternative strategies in the pursuit of combining seaweed production and wind farms to avoid significant financial (among many other) trade-offs and risks. More broadly, we have found that our approach's ability to visually represent a complex situation while considering multiple objectives could be immensely valuable for other bioeconomy innovations or nature-based solutions. It helps mitigate the potential for expensive investments without a comprehensive evaluation of the associated risks and negative impacts, as necessitated by the principles of sustainability in decision-making.


Subject(s)
Aquaculture , Seaweed , Wind , Uncertainty , Conservation of Natural Resources/methods , Ecosystem
2.
Foods ; 11(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35627084

ABSTRACT

With a world population estimated at 10 billion people by 2050, the challenge to secure healthy and safe food is evident. Seaweed is a potential answer to this challenge. Expanding the use of seaweed in food systems requires an emphasis on safe practices to avoid adverse human health effects after consumption and irreversible damage to marine ecosystems. This study aims to evaluate relevant food safety and environmental safety hazards, monitoring measures, and mitigation strategies in the seaweed sector. For this study, a literature review, survey (n = 36), and interviews (n = 12) were conducted to identify hazards. The review and interviews aimed at pinpointing monitoring measures and mitigation strategies applied, while the survey revealed data gaps and further actions needed for the sector. Relevant food safety hazards include (inorganic) arsenic, iodine, and heavy metals, among others, such as pathogenic bacteria, while environmental hazards include environmental pathogens and parasites introduced into the ecosystem by domesticated seaweed, among others. Measures applied aim at preventing or mitigating hazards through good hygienic or manufacturing practices, food safety procedures or protocols, or pre-site farm selection. Although the future needs of the seaweed sector vary, for some, harmonized advice and protocols that align with a changing food system and hazard knowledge development as well as information on the benefits of seaweed and regulating climate and water quality may help.

3.
Mar Pollut Bull ; 174: 113178, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864468

ABSTRACT

Aquaculture practices at sea are far from impact neutral and remain an important source of marine plastic pollution. With projected rapid continual growth in the sector, if left unmanaged, aquaculture pollution can have detrimental environmental and social implications. Using the DPSIR framework, the paper examines current practices and pathways of plastic pollution from marine aquaculture in the NE-Atlantic, drawing on findings from literature, stakeholder consultations and beach litter assessments. Pathways for aquaculture-related litter identified include rough weather, farmer behavior, inadequate access to recycling facilities, low price of consumable plastics and high cost of recycling. Beach litter analyses conducted as part of the study exposed serious issues of under quantification, resulting from difficulties in source identification and a lack of detailed categorization in official monitoring systems. The paper makes recommendations to improve litter quantification and waste management, including the use of local knowledge and experts to identify sources of marine litter.


Subject(s)
Bathing Beaches , Plastics , Aquaculture , Environmental Monitoring , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...