Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Sci Rep ; 12(1): 16930, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209279

ABSTRACT

In early systemic sclerosis (Scleroderma, SSc), the vasculature is impaired. Although the exact etiology of endothelial cell damage in SSc remains unclear, it is hypothesized that endothelial to mesenchymal transition (EndoMT) plays a key role. To perform physiologically relevant angiogenic studies, we set out to develop an angiogenesis-on-a-chip platform that is suitable for assessing disease parameters that are relevant to SSc and other vasculopathies. In the model, we substituted Fetal Bovine Serum (FBS) with Human Serum without impairing the stability of the culture. We showed that 3D microvessels and angiogenic factor-induced sprouts exposed to key pro-inflammatory and pro-fibrotic cytokines (TNFα and TGFß) undergo structural alterations consisting of destructive vasculopathy (loss of small vessels). We also showed that these detrimental effects can be prevented by compound-mediated inhibition of TGFß-ALK5 signaling or addition of a TNFα neutralizing antibody to the 3D cultures. This demonstrates that our in vitro model is suitable for compound testing and identification of new drugs that can protect from microvascular destabilization or regression in disease-mimicking conditions. To support this, we demonstrated that sera obtained from SSc patients can exert an anti-angiogenic effect on the 3D vessel model, opening the doors to screening for potential SSc drugs, enabling direct patient translatability and personalization of drug treatment.


Subject(s)
Scleroderma, Systemic , Tumor Necrosis Factor-alpha , Angiogenesis Inducing Agents , Antibodies, Neutralizing , Humans , Lab-On-A-Chip Devices , Microvessels , Neovascularization, Pathologic , Serum Albumin, Bovine , Transforming Growth Factor beta
2.
J Pharm Sci ; 110(4): 1601-1614, 2021 04.
Article in English | MEDLINE | ID: mdl-33545187

ABSTRACT

Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-ß-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).


Subject(s)
Kidney Tubules, Proximal , Lab-On-A-Chip Devices , Animals , Drug Interactions , Humans , Kidney , Reproducibility of Results
3.
ALTEX ; 37(1): 47-63, 2020.
Article in English | MEDLINE | ID: mdl-31445503

ABSTRACT

Lifestyle and genetic factors can lead to the development of atherosclerosis and, ultimately, cardiovascular adverse events. Rodent models are commonly used to investigate mechanism(s) of atherogenesis. However, the 3Rs principles, aiming to limit animal testing, encourage the scientific community to develop new physiologically relevant in vitro alternatives. Leveraging the 96-chip OrganoPlate®, a microfluidic platform, we have established a three-dimensional (3D) model of endothelial microvessels-on-a-chip under flow using primary human coronary arterial endothelial cells. As functional readout, we have set up an assay to measure the adhesion of monocytes to the lumen of perfused microvessels. For monitoring molecular changes in microvessels, we have established the staining and quantification of specific protein markers of inflammation and oxidative stress using high content imaging, as well as analyzed transcriptome changes using microarrays. To demonstrate its usefulness in systems toxicology, we leveraged our 3D vasculature-on-a-chip model to assess the impact of the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product, and the 3R4F reference cigarette on the adhesion of monocytic cells to endothelial microvessels. Our results show that THS 2.2 aerosol-conditioned medium had a reduced effect on monocyte-endothelium adhesion compared with 3R4F smoke-conditioned medium. In conclusion, we have established a relevant 3D vasculature-on-a-chip model for investigating leukocyte-endothelial microvessel adhesion. A case study illustrates how the model can be used for product testing in the context of systems toxicology-based risk assessment. The current model and its potential further development options also open perspectives of applications in vascular disease research and drug discovery.


Subject(s)
Animal Use Alternatives , Cell Adhesion , Endothelial Cells/physiology , Lab-On-A-Chip Devices , Monocytes/physiology , Coronary Vessels/cytology , Humans , Imaging, Three-Dimensional , Tissue Culture Techniques
4.
AAPS J ; 20(5): 90, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30109442

ABSTRACT

Proximal tubules in the kidney play a crucial role in reabsorbing and eliminating substrates from the body into the urine, leading to high local concentrations of xenobiotics. This makes the proximal tubule a major target for drug toxicity that needs to be evaluated during the drug development process. Here, we describe an advanced in vitro model consisting of fully polarized renal proximal tubular epithelial cells cultured in a microfluidic system. Up to 40 leak-tight tubules were cultured on this platform that provides access to the basolateral as well as the apical side of the epithelial cells. Exposure to the nephrotoxicant cisplatin caused a dose-dependent disruption of the epithelial barrier, a decrease in viability, an increase in effluent LDH activity, and changes in expression of tight-junction marker zona-occludence 1, actin, and DNA-damage marker H2A.X, as detected by immunostaining. Activity and inhibition of the efflux pumps P-glycoprotein (P-gp) and multidrug resistance protein (MRP) were demonstrated using fluorescence-based transporter assays. In addition, the transepithelial transport function from the basolateral to the apical side of the proximal tubule was studied. The apparent permeability of the fluorescent P-gp substrate rhodamine 123 was decreased by 35% by co-incubation with cyclosporin A. Furthermore, the activity of the glucose transporter SGLT2 was demonstrated using the fluorescent glucose analog 6-NBDG which was sensitive to inhibition by phlorizin. Our results demonstrate that we developed a functional 3D perfused proximal tubule model with advanced renal epithelial characteristics that can be used for drug screening studies.


Subject(s)
Cell Culture Techniques , Epithelial Cells/drug effects , Kidney Diseases/chemically induced , Kidney Tubules, Proximal/drug effects , Membrane Transport Modulators/toxicity , Membrane Transport Proteins/drug effects , Perfusion , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Biological Transport , Cell Line , Cell Polarity , Cisplatin/toxicity , Cyclosporine/toxicity , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Lab-On-A-Chip Devices , Membrane Transport Proteins/metabolism , Microfluidic Analytical Techniques , Phlorhizin/toxicity , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/toxicity , Tight Junctions/drug effects , Tight Junctions/metabolism , Tight Junctions/pathology
5.
AAPS J ; 20(5): 87, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30051196

ABSTRACT

Drug-transporter interactions could impact renal drug clearance and should ideally be detected in early stages of drug development to avoid toxicity-related withdrawals in later stages. This requires reliable and robust assays for which current high-throughput screenings have, however, poor predictability. Kidney-on-a-chip platforms have the potential to improve predictability, but often lack compatibility with high-content detection platforms. Here, we combined conditionally immortalized proximal tubule epithelial cells overexpressing organic anion transporter 1 (ciPTEC-OAT1) with the microfluidic titer plate OrganoPlate to develop a screenings assay for renal drug-transporter interactions. In this platform, apical localization of F-actin and intracellular tight-junction protein zonula occludens-1 (ZO-1) indicated appropriate cell polarization. Gene expression levels of the drug transporters organic anion transporter 1 (OAT1; SLC22A6), organic cation transporter 2 (OCT2; SLC22A2), P-glycoprotein (P-gp; ABCB1), and multidrug resistance-associated protein 2 and 4 (MRP2/4; ABCC2/4) were similar levels to 2D static cultures. Functionality of the efflux transporters P-gp and MRP2/4 was studied as proof-of-concept for 3D assays using calcein-AM and 5-chloromethylfluorescein-diacetate (CMFDA), respectively. Confocal imaging demonstrated a 4.4 ± 0.2-fold increase in calcein accumulation upon P-gp inhibition using PSC833. For MRP2/4, a 3.0 ± 0.2-fold increased accumulation of glutathione-methylfluorescein (GS-MF) was observed upon inhibition with a combination of PSC833, MK571, and KO143. Semi-quantitative image processing methods for P-gp and MRP2/4 was demonstrated with corresponding Z'-factors of 0.1 ± 0.3 and 0.4 ± 0.1, respectively. In conclusion, we demonstrate a 3D microfluidic PTEC model valuable for screening of drug-transporter interactions that further allows multiplexing of endpoint read-outs for drug-transporter interactions and toxicity.


Subject(s)
Drug Evaluation, Preclinical/methods , Epithelial Cells/drug effects , Kidney Tubules, Proximal/drug effects , Lab-On-A-Chip Devices , Membrane Transport Modulators/toxicity , Membrane Transport Proteins/drug effects , Microfluidic Analytical Techniques/instrumentation , Actins/metabolism , Biological Transport , Cell Line, Transformed , Cell Polarity , Epithelial Cells/metabolism , Humans , Kidney Tubules, Proximal/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microscopy, Confocal , Multidrug Resistance-Associated Protein 2 , Risk Assessment , Zonula Occludens-1 Protein/metabolism
6.
Proc Natl Acad Sci U S A ; 115(13): E2997-E3006, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531030

ABSTRACT

Inherited retinal degeneration (RD) is a devastating and currently untreatable neurodegenerative condition that leads to loss of photoreceptor cells and blindness. The vast genetic heterogeneity of RD, the lack of "druggable" targets, and the access-limiting blood-retinal barrier (BRB) present major hurdles toward effective therapy development. Here, we address these challenges (i) by targeting cGMP (cyclic guanosine- 3',5'-monophosphate) signaling, a disease driver common to different types of RD, and (ii) by combining inhibitory cGMP analogs with a nanosized liposomal drug delivery system designed to facilitate transport across the BRB. Based on a screen of several cGMP analogs we identified an inhibitory cGMP analog that interferes with activation of photoreceptor cell death pathways. Moreover, we found liposomal encapsulation of the analog to achieve efficient drug targeting to the neuroretina. This pharmacological treatment markedly preserved in vivo retinal function and counteracted photoreceptor degeneration in three different in vivo RD models. Taken together, we show that a defined class of compounds for RD treatment in combination with an innovative drug delivery method may enable a single type of treatment to address genetically divergent RD-type diseases.


Subject(s)
Blood-Retinal Barrier/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/administration & dosage , Disease Models, Animal , Drug Delivery Systems , Retinal Degeneration/drug therapy , Animals , Blood-Retinal Barrier/drug effects , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Liposomes , Mice , Photoreceptor Cells/metabolism , Retina/drug effects , Retina/metabolism , Retinal Degeneration/metabolism , Signal Transduction/drug effects
7.
Drug Discov Today Technol ; 20: 59-69, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27986226

ABSTRACT

The blood-brain barrier (BBB) represents a major obstacle for the delivery and development of drugs curing brain pathologies. However, this biological barrier presents numerous endogenous specialized transport systems that can be exploited by engineered nanoparticles to enable drug delivery to the brain. In particular, conjugation of glutathione (GSH) onto PEGylated liposomes (G-Technology®) showed to safely enhance delivery of encapsulated drugs to the brain. Yet, understanding of the mechanism of action remains limited and full mechanistic understanding will aid in the further optimization of the technology. In order to elucidate the mechanism of brain targeting by GSH-PEG liposomes, we here demonstrate that the in vivo delivery of liposomal ribavirin is increased in brain extracellular fluid according to the extent of GSH conjugation onto the liposomes. In vitro, using the hCMEC/D3 human cerebral microvascular endothelial (CMEC) cell line, as well as primary bovine and porcine CMEC (and in contrast to non-brain derived endothelial and epithelial cells), we show that liposomal uptake occurs through the process of endocytosis and that the brain-specific uptake is also glutathione conjugation-dependent. Interestingly, the uptake mechanism is an active process that is temperature-, time- and dose-dependent. Finally, early endocytosis events rely on cytoskeleton remodeling, as well as dynamin- and clathrin-dependent endocytosis pathways. Overall, our data demonstrate that the glutathione-dependent uptake mechanism of the G-Technology involves a specific endocytosis pathway indicative of a receptor-mediated mechanism, and supports the benefit of this drug delivery technology for the treatment of devastating brain diseases.


Subject(s)
Antiviral Agents/administration & dosage , Brain/metabolism , Glutathione/administration & dosage , Polyethylene Glycols/administration & dosage , Ribavirin/administration & dosage , Animals , Antiviral Agents/pharmacokinetics , Biological Transport , Cattle , Cell Line , Cells, Cultured , Endothelial Cells/metabolism , Glutathione/chemistry , Glutathione/pharmacokinetics , HEK293 Cells , Humans , Liposomes , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Rats, Wistar , Ribavirin/pharmacokinetics , Swine
8.
PLoS One ; 11(2): e0148850, 2016.
Article in English | MEDLINE | ID: mdl-26872051

ABSTRACT

BACKGROUND: Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. RESULTS: In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. DISCUSSION: The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy.


Subject(s)
Aminolevulinic Acid/analogs & derivatives , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Skin/drug effects , Aminolevulinic Acid/pharmacokinetics , Aminolevulinic Acid/pharmacology , Animals , Animals, Outbred Strains , Dose Fractionation, Radiation , Drug Evaluation, Preclinical , Endothelial Cells/metabolism , Female , Mice , Microscopy, Fluorescence , Photosensitizing Agents/pharmacokinetics , Protoporphyrins/pharmacokinetics , Skin/blood supply , Skin/metabolism , Sus scrofa
9.
Perspect Med Educ ; 4(3): 119-27, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26016429

ABSTRACT

Cognitive Load Theory (CLT) has started to find more applications in medical education research. Unfortunately, misconceptions such as lower cognitive load always being beneficial to learning and the continued use of dated concepts and methods can result in improper applications of CLT principles in medical education design and research. This review outlines how CLT has evolved and presents a synthesis of current-day CLT principles in a holistic model for medical education design. This model distinguishes three dimensions: task fidelity: from literature (lowest) through simulated patients to real patients (highest); task complexity: the number of information elements; and instructional support: from worked examples (highest) through completion tasks to autonomous task performance (lowest). These three dimensions together constitute three steps to proficient learning: (I) start with high support on low-fidelity low-complexity tasks and gradually fade that support as learners become more proficient; (II) repeat I for low-fidelity but higher-complexity tasks; and (III) repeat I and II in that order at subsequent levels of fidelity. The numbers of fidelity levels and complexity levels within fidelity levels needed depend on the aims of the course, curriculum or individual learning trajectory. This paper concludes with suggestions for future research based on this model.

10.
PLoS One ; 9(8): e104448, 2014.
Article in English | MEDLINE | ID: mdl-25111655

ABSTRACT

Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate.


Subject(s)
Molecular Targeted Therapy/methods , Photochemotherapy/methods , Receptors, Somatostatin/metabolism , Somatostatin/analogs & derivatives , Somatostatin/therapeutic use , Amino Acid Sequence , Animals , Biological Transport , Humans , Intracellular Space/metabolism , K562 Cells , Rats , Somatostatin/metabolism , Somatostatin/pharmacokinetics
11.
Photochem Photobiol ; 90(4): 896-902, 2014.
Article in English | MEDLINE | ID: mdl-24628584

ABSTRACT

Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA-PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy.


Subject(s)
Aminolevulinic Acid/analogs & derivatives , Aminolevulinic Acid/pharmacology , Photosensitivity Disorders/chemically induced , Photosensitizing Agents/pharmacology , Skin/drug effects , Administration, Topical , Aminolevulinic Acid/administration & dosage , Animals , Antigens, CD , Cadherins , Endothelial Cells/drug effects , Endothelial Cells/radiation effects , Mice , Photosensitizing Agents/administration & dosage , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Protoporphyrins/metabolism
12.
J Drug Target ; 22(5): 460-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24524555

ABSTRACT

Partly due to poor blood-brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24 h after injection. Furthermore, 24 h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p < 0.001). In the microdialysis study 4-fold higher (p < 0.001) brain levels of fluorescent tracer were found after intravenous injection of GSH-PEG liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window.


Subject(s)
Blood-Brain Barrier/drug effects , Drug Carriers/chemistry , Glutathione/chemistry , Polyethylene Glycols/chemistry , Animals , Blood-Brain Barrier/metabolism , Cell Line , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Drug Stability , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fluoresceins , Fluorescent Dyes , Glutathione/administration & dosage , Glutathione/pharmacokinetics , Injections, Intravenous , Injections, Spinal , Liposomes , Microdialysis , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution
13.
J Biomed Opt ; 19(1): 15010, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24477382

ABSTRACT

Quantification of fluorescence in vivo is complicated by the influence of tissue optical properties on the collected fluorescence signal. When tissue optical properties in the measurement volume are quantified, one can obtain the intrinsic fluorescence, which equals the product of fluorophore absorption coefficient and quantum yield. We applied this method to in vivo single-fiber fluorescence spectroscopy measurements on mouse tongue, skin, liver, and oral squamous cell carcinoma, where we detected intrinsic fluorescence spectra of the photosensitizers chlorin e6 and Bremachlorin at t=[3,4.5,6,24,48] h incubation time. We observed a tissue-dependent maximum of 35% variation in the total correction factor over the visible wavelength range. Significant differences in spectral shape over time between sensitizers were observed. Although the wavelength position of the fluorescence intensity maximum for ce6 shifted to the red, Bremachlorin showed a blue shift. Furthermore, the Bremachlorin peak appeared to be broader than the ce6 fluorescence peak. Intrinsic fluorescence intensity, which can be related to photosensitizer concentration, was decreasing for all time points but showed significantly more Bremachlorin present compared to ce6 at long incubation times. Results from this study can be used to define an optimal treatment protocol for Bremachlorin-based photodynamic therapy.


Subject(s)
Chlorophyll/analogs & derivatives , Photosensitizing Agents/chemistry , Animals , Carcinoma, Squamous Cell/pathology , Chlorophyll/chemistry , Chlorophyllides , Female , Fluorescence , Green Fluorescent Proteins , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Fluorescence , Mouth Neoplasms/pathology , Normal Distribution , Optics and Photonics , Photochemotherapy , Porphyrins/chemistry , Skin/pathology , Spectrometry, Fluorescence , Spectrophotometry , Tongue/pathology
14.
Lasers Surg Med ; 46(3): 224-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24436109

ABSTRACT

BACKGROUND AND OBJECTIVE: The effect of photodynamic therapy (PDT) is dependent on the localization of photosensitizer in the treatment volume at the time of illumination. Investigation of photosensitizer pharmacokinetics in and around the treatment volume aids in determining the optimal drug light interval for PDT. MATERIALS AND METHODS: In this paper we have investigated the distribution of the photosensitizers chlorin e6 and Bremachlorin in the oral squamous cell carcinoma cell-line OSC19-Luc-Gfp in a tongue tumor, tumor boundary, invasive tumor boundary, and normal tongue tissue by the use of confocal microscopy of frozen sections. Tongues were harvested at t = [3, 4.5, 6, 24, 48] hours after injection. RESULTS: Both photosensitizers showed a decreasing fluorescence with increasing incubation time, and at all time points higher fluorescence was measured in tumor boundary than in tumor itself. For short incubation times, a higher fluorescence intensity was observed in the invasive tumor border and normal tissue compared to tumor tissue. Bremachlorin showed a small increase in tumor to normal ratio at 24 and 48 hours incubation time. Ce6 was undetectable at 48 hours. We did not find a correlation between photosensitizer localization and the presence of vasculature. CONCLUSION: The modest tumor/tumor boundary to normal selectivity of between 1.2 and 2.5 exhibited by Bremachlorin 24 and 48 hours after administration may allow selective targeting of tongue tumors. Further studies investigating the relationship between Bremachlorin concentration and therapeutic efficacy PDT with long incubation times are warranted.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacokinetics , Porphyrins/pharmacokinetics , Tongue Neoplasms/drug therapy , Animals , Chlorophyllides , Drug Combinations , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Random Allocation
15.
Lasers Surg Med ; 45(10): 668-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24174342

ABSTRACT

BACKGROUND AND OBJECTIVE: Foslip and Fospeg are liposomal formulations of the photosensitizer mTHPC (Foscan), which is used for photodynamic therapy (PDT) of malignancies. Literature suggests that liposomal mTHPC formulations have better properties and increased tumor uptake compared to Foscan. To investigate this, we used the 4NQO-induced carcinogen model to compare the localization of the different mTHPC formulations within normal, precancerous, and cancerous tissue. In contrast to xenograft models, the 4NQO model closely mimics the carcinogenesis of human oral dysplasia. MATERIALS AND METHODS: Fifty-four rats drank water with the carcinogen 4NQO. When oral examination revealed tumor, the rats received 0.15 mg/kg mTHPC (Foscan, Foslip, or Fospeg). At 2, 4, 8, 24, 48, or 96 hours after injection the rats were sacrificed. Oral tissue was sectioned for HE slides and for fluorescence confocal microscopy. The HE slides were scored on the severity of dysplasia by the epithelial atypia index (EAI). The calibrated fluorescence intensity per formulation or time point was correlated to EAI. RESULTS: Fospeg showed higher mTHPC fluorescence in normal and tumor tissue compared to both Foscan and Foslip. Significant differences in fluorescence between tumor and normal tissue were found for all formulations. However, at 4, 8, and 24 hours only Fospeg showed a significant difference. The Pearson's correlation between EAI and mTHPC fluorescence proved weak for all formulations. CONCLUSION: In our induced carcinogenesis model, Fospeg exhibited a tendency for higher fluorescence in normal and tumor tissue compared to Foslip and Foscan. In contrast to Foscan and Foslip, Fospeg showed significantly higher fluorescence in tumor versus normal tissue at earlier time points, suggesting a possible clinical benefit compared to Foscan. Low correlation between grade of dysplasia and mTHPC fluorescence was found.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Mesoporphyrins/pharmacokinetics , Mouth Mucosa/metabolism , Mouth Neoplasms/metabolism , Photosensitizing Agents/pharmacokinetics , 4-Nitroquinoline-1-oxide , Animals , Carcinogens , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/drug therapy , Liposomes , Male , Mesoporphyrins/administration & dosage , Mesoporphyrins/therapeutic use , Microscopy, Confocal , Microscopy, Fluorescence , Mouth Mucosa/pathology , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Observer Variation , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Rats , Rats, Wistar
16.
Proc Natl Acad Sci U S A ; 109(19): 7457-62, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22529385

ABSTRACT

Influenza A virus (IAV) enters host cells after attachment of its hemagglutinin (HA) to surface-exposed sialic acid. Sialylated N-linked glycans have been reported to be essential for IAV entry [Chu VC, Whittaker GR (2004) Proc Natl Acad Sci USA 102:18153-18158], thereby implicating the requirement for proteinaceous receptors in IAV entry. Here we show, using different N-acetylglucosaminyl transferase 1 (GnT1)-deficient cells, that N-linked sialosides can mediate, but are not required for, entry of IAV. Entry into GnT1-deficient cells was fully dependent on sialic acid. Although macropinocytic entry appeared to be affected by the absence of sialylated N-glycans, dynamin-dependent entry was not affected at all. However, binding of HA to GnT1-deficient cells and subsequent entry of IAV were reduced by the presence of serum, which could be reversed by back-transfection of a GnT1-encoding plasmid. The inhibitory effect of serum was significantly increased by inhibition of the viral receptor-destroying enzyme neuraminidase (NA). Our results indicate that decoy receptors on soluble serum factors compete with cell surface receptors for binding to HA in the absence of sialylated N-glycans at the cell surface. This competition is particularly disturbed by the additional presence of NA inhibitors, resulting in strongly reduced IAV entry. Our results indicate that the balance between HA and NA is important not only for virion release, but also for entry into cells.


Subject(s)
Influenza A Virus, H1N1 Subtype/metabolism , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Virus Internalization , Animals , CHO Cells , Cattle , Cell Line , Cricetinae , Cricetulus , Culture Media/metabolism , Culture Media/pharmacology , Dynamins/genetics , Dynamins/metabolism , Endocytosis , Fetal Blood/metabolism , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Microscopy, Confocal , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Neuraminidase/metabolism , Protein Binding/drug effects , Serum/metabolism
17.
Lasers Surg Med ; 43(6): 528-36, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21761424

ABSTRACT

BACKGROUND AND OBJECTIVE: Foslip® and Fospeg® are liposomal formulations of the photosensitizer mTHPC, intended for use in Photodynamic Therapy (PDT) of malignancies. Foslip consists of mTHPC encapsulated in conventional liposomes, Fospeg consists of mTHPC encapsulated in pegylated liposomes. Possible differences in tumor fluorescence and vasculature kinetics between Foslip, Fospeg, and Foscan® were studied using the rat window-chamber model. MATERIAL AND METHODS: In 18 rats a dorsal skin fold window chamber was installed and a mammary carcinoma was transplanted in the subcutaneous tissue. The dosage used for intravenous injection was 0.15 mg/kg mTHPC for each formulation. At seven time-points after injection (5 minutes to 96 hours) fluorescence images were made with a CCD. The achieved mTHPC fluorescence images were corrected for tissue optical properties and autofluorescence by the ratio fluorescence imaging technique of Kascakova et al. Fluorescence intensities of three different regions of interest (ROI) were assessed; tumor tissue, vasculature, and surrounding connective tissue. RESULTS: The three mTHPC formulations showed marked differences in their fluorescence kinetic profile. After injection, vascular mTHPC fluorescence increased for Foslip and Fospeg but decreased for Foscan. Maximum tumor fluorescence is reached at 8 hours for Fospeg and at 24 hours for Foscan and Foslip with overall higher fluorescence for both liposomal formulations. Foscan showed no significant difference in fluorescence intensity between surrounding tissue and tumor tissue (selectivity). However, Fospeg showed a trend toward tumor selectivity at early time points, while Foslip reached a significant difference (P < 0.05) at these time points. CONCLUSIONS: Our results showed marked differences in fluorescence intensities of Fospeg, Foslip, and Foscan, which suggest overall higher bioavailability for the liposomal formulations. Pegylated liposomes seemed most promising for future application; as Fospeg showed highest tumor fluorescence at the earlier time points.


Subject(s)
Mesoporphyrins/pharmacokinetics , Neoplasms/metabolism , Animals , Female , Fluorescence , Liposomes , Mesoporphyrins/administration & dosage , Mesoporphyrins/analysis , Neoplasm Transplantation , Neoplasms/chemistry , Rats , Rats, Inbred F344
18.
Biomed Opt Express ; 2(5): 1030-9, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21559117

ABSTRACT

Nonlinear spectral imaging microscopy (NSIM) allows simultaneous morphological and spectroscopic investigation of intercellular events within living animals. In this study we used NSIM for in vivo time-lapse in-depth spectral imaging and monitoring of protein-bound and free reduced nicotinamide adenine dinucleotide (NADH) in mouse keratinocytes following total acute ischemia for 3.3 h at ~3 min time intervals. The high spectral resolution of NSIM images allows discrimination between the two-photon excited fluorescence emission of protein-bound and free NAD(P)H by applying linear spectral unmixing to the spectral image data. Results reveal the difference in the dynamic response between protein-bound and free NAD(P)H to ischemia-induced hypoxia/anoxia. Our results demonstrate the capability of nonlinear spectral imaging microscopy in unraveling dynamic cellular metabolic events within living animals for long periods of time.

19.
Lasers Med Sci ; 26(6): 789-801, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21279401

ABSTRACT

A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dual-wavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed.


Subject(s)
Photosensitizing Agents/pharmacokinetics , Algorithms , Animals , Female , Fluorescence , Infrared Rays , Mesoporphyrins/administration & dosage , Mesoporphyrins/pharmacokinetics , Optical Phenomena , Photochemotherapy , Photosensitizing Agents/administration & dosage , Radiometry/methods , Radiometry/statistics & numerical data , Rats , Rats, Inbred F344 , Skin/blood supply , Skin/drug effects , Skin/metabolism
20.
Photochem Photobiol ; 86(5): 1140-6, 2010.
Article in English | MEDLINE | ID: mdl-20553407

ABSTRACT

Photodynamic therapy (PDT) for actinic field cancerization is effective but painful. Pain mechanisms remain unclear but fluence rate has been shown to be a critical factor. Lower fluence rates also utilize available oxygen more efficiently. We investigated PDT effect in normal SKH1-HR mice using low and high fluence rate aminolevulinic acid (ALA) PDT and a fractionated illumination scheme. Six groups of six mice with different light treatment parameters were studied. Visual skin damage was assessed up to 7days post-PDT. Fluorescence and reflectance spectroscopy during illuminations provided us with real-time information about protoporphyrin IX (PpIX) photobleaching. A novel dosing approach was introduced in that we used a photobleaching percentage instead of a preset fluence. Data show similar total and maximum damage scores in high and low fluence rate groups. Photobleaching of PpIX in the low fluence rate groups shows a trend toward more efficient photobleaching. Results indicate that low fluence rate PDT is as effective as and more efficient than high fluence rate PDT in normal mouse skin. Low fluence rate PDT light protocols need to be explored in human studies in search for an effective and well-tolerated treatment for actinic field cancerization.


Subject(s)
Aminolevulinic Acid , Photochemotherapy , Skin/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Mice , Photosensitizing Agents/chemistry , Protoporphyrins/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...