Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 7911, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31114003

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
J Exp Biol ; 221(Pt 17)2018 09 10.
Article in English | MEDLINE | ID: mdl-29997155

ABSTRACT

In a previous study, broods of the Lake Victoria cichlid Haplochromis ishmaeli raised under hypoxic or normoxic conditions showed striking differences in isohemoglobin (isoHb) pattern that were not observed in two other cichlids that do not belong to the Lake Victoria species flock. We therefore hypothesized that the adaptive mechanism seen in H. ishmaeli in response to hypoxia constitutes a trait that the Lake Victoria species flock inherited from ancestors that lived in hypoxic environments. We tested this hypothesis by designing split-brood experiments with three other representative species from the same species flock: the insectivorous Haplochromis thereuterion, the mollusk-shelling Platytaeniodus degeni and the zooplanktivorous Haplochromis piceatus, while keeping H. ishmaeli as a reference. Split broods were raised, under either normoxia or hypoxia. All hypoxia-raised (HR) individuals of each of the four species exhibited a distinctly different isoHb pattern compared with their normoxia-raised (NR) siblings. The hemoglobin of HR H. thereuterion showed higher O2 affinity compared with NR siblings particularly in the presence of ATP and GTP, indicating that blood of HR juveniles has significantly improved O2-binding affinity under hypoxic conditions. We also tested the capacity to acclimate at greater age in two species by reversing the O2 condition after 7 (H. thereuterion) and 4 (H. ishmaeli) months. After reacclimation for 1 and 2 months, respectively, we found incomplete reversal with intermediate isoHb patterns. As three of the four species do not encounter hypoxic conditions in their environment, this unique trait seems to be a relic inherited from predecessors that lived in hypoxic environments.


Subject(s)
Cichlids/physiology , Evolution, Molecular , Fish Proteins/chemistry , Hemoglobins/chemistry , Anaerobiosis , Animals , Kenya , Lakes , Species Specificity , Tanzania , Uganda
3.
Article in English | MEDLINE | ID: mdl-27013359

ABSTRACT

This study evaluates the effects of temperature on hCG-induced spermatogenesis in European eel (Anguilla anguilla), subjected to three thermal regimes: T10: 10°C (first 4weeks), 15°C (next 3weeks) and 20°C (last 6weeks); T15: 15°C (first 4weeks) and 20°C (last 9weeks); and T20: constant 20°C for the duration of the experiment. At 10°C, maturation stopped in the A spermatogonial stage (SPG1), and no further maturation was observed until the temperature was ≥15°C. With the aim of explaining these results, the influence of temperature on steroidogenic enzyme gene expression and steroid synthesis was tested. The initial synthesis of androgens (T and 11-KT) increased at SPG1, and was not influenced by temperature. Likewise, the gene expression of the steroidogenic enzymes linked to androgen synthesis (aacyp11a1, aacyp17-I and aa11ßHSD) also increased at SPG1. In contrast, no correlation was seen between the increase in E2 and the aacyp19a1 gene expression peak in the testes, with E2 increasing as a consequence of the seawater acclimation carried out before hormonal treatment, and peaking the aacyp19a1 gene expression at B spermatogonial stage (SPG2). Aacyp21 gene expression was also higher at SPG2, and this stage was only reached when the rearing temperature was ≥15°C. In conclusion, androgen synthesis is not dependent on temperature, but further maturation requires higher temperatures in order to induce a change in the steroidogenic pathway towards estrogen and progestin synthesis. This study demonstrates that temperature plays a crucial role in European eel maturation, even perhaps controlling gonad development during the reproductive migration.


Subject(s)
Androgens/biosynthesis , Eels/physiology , Testis/metabolism , Animals , Eels/metabolism , Gene Expression , Male
4.
Gen Comp Endocrinol ; 225: 185-196, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26255685

ABSTRACT

Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17ß-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.


Subject(s)
Anguilla/metabolism , Ovary/metabolism , Sexual Maturation/physiology , Transcriptome , Anguilla/blood , Anguilla/genetics , Animals , Biomarkers/metabolism , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Pituitary Gland/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Steroid 17-alpha-Hydroxylase/genetics , Steroid 17-alpha-Hydroxylase/metabolism
5.
Front Physiol ; 6: 256, 2015.
Article in English | MEDLINE | ID: mdl-26441675

ABSTRACT

The spawning migration of the European eel (Anguilla anguilla) can cover more than 6000 km, while that of the New Zealand short-finned eel (A. australis) is assumed to be approximately 3000 km. Since these species are expected to show adaptive traits to such an important lifetime event, we hypothesized differences in swimming capacity and energetics as a response to this adaptation. In an experimental swimming respirometer set-up, critical swimming speed (Ucrit), optimal swimming speed (Uopt), mass specific oxygen consumption rate (MO2), standard metabolic rate (SMR), active metabolic rate at Ucrit (AMRcrit) and at Uopt (AMRopt), the minimum cost of transport at Uopt (COTmin), and the scope for activity, were assessed and compared between the species. With a similar body length and mass, European eels showed ca. 25% higher values for both Ucrit and Uopt, and 23% lower values for COTmin, compared to New Zealand short-finned eels. However, SMR, AMRcrit, AMRopt, and scope for activity did not differ between the species, indicating very similar swimming physiology traits. This study discusses physiological aspects of long distance migration and provides recommendations for (a) swimming respirometry in anguilliform fish, and (b) telemetry research using externally attached pop-up tags.

6.
PLoS One ; 10(5): e0126008, 2015.
Article in English | MEDLINE | ID: mdl-25946034

ABSTRACT

Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.


Subject(s)
Anguilla/genetics , Evolution, Molecular , Gene Duplication , Leptin/genetics , Receptors, Leptin/genetics , Anguilla/classification , Anguilla/physiology , Animals , Female , Fishes/genetics , Male , Phylogeny , Sexual Maturation/genetics , Species Specificity , Synteny , Tissue Distribution
7.
PLoS One ; 9(11): e112280, 2014.
Article in English | MEDLINE | ID: mdl-25409179

ABSTRACT

Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers.


Subject(s)
Anguilla/physiology , Remote Sensing Technology/instrumentation , Telemetry/instrumentation , Animal Migration , Animals , Female , Swimming
8.
Gen Comp Endocrinol ; 204: 267-76, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24992558

ABSTRACT

The European eel is a critically endangered species that cannot be reproduced in captivity yet. Artificial maturation of female European eels can be achieved via a laborious and expensive procedure, including weekly injections with pituitary extracts for up to 6 months. The success rate is highly variable and a minimally invasive method for early selection of responsive eels would prevent the unnecessary and lengthy treatment of non-responding individuals. Since sexual maturation of European eels is accompanied by morphological changes of the pectoral fin, we examined whether fin could be used to monitor the response to the hormone treatment. Farmed eels were subjected to weekly injections with pituitary extracts and representative groups were sampled at 0 and 14-18 weeks of hormone treatment. Responders and non-responders were identified based on the gonado-somatic index. Transcriptomes of pectoral fin samples obtained at the start and end of the trial were mapped using Illumina RNAseq. Responders showed 384 and non-responders only 54 differentially expressed genes. Highly stringent selection based on minimum expression levels and fold-changes and a manual re-annotation round yielded 23 up-regulated and 21 down-regulated maturation marker genes. The up-regulated markers belong to five categories: proteases, skin/mucus structural proteins, steroid hormone signaling, tyrosine/dopamine metabolism and lipid metabolism. The down-regulated markers are either blood markers or lectin-related genes. In conclusion, pectoral fin transcriptomes are a rich source of indicator markers for monitoring hormone induced sexual maturation of female European eels. In addition, these markers provide important new insight into several fundamental processes in eel biology.


Subject(s)
Anguilla/metabolism , Biomarkers/analysis , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hormones/pharmacology , Pituitary Gland/metabolism , Sexual Maturation/physiology , Anguilla/genetics , Anguilla/growth & development , Animals , Blotting, Western , Female , High-Throughput Nucleotide Sequencing , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sexual Maturation/drug effects
9.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297900

ABSTRACT

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Subject(s)
Adaptation, Biological/physiology , Elapid Venoms , Elapidae , Evolution, Molecular , Genome/physiology , Transcriptome/physiology , Animals , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapidae/genetics , Elapidae/metabolism , Exocrine Glands/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
10.
PLoS One ; 8(10): e77396, 2013.
Article in English | MEDLINE | ID: mdl-24130881

ABSTRACT

Hormones secreted from the pituitary gland regulate important processes such as development, growth and metabolism, reproduction, water balance, and body pigmentation. Synthesis and secretion of pituitary hormones are regulated by different factors from the hypothalamus, but also through feedback mechanisms from peripheral organs, and from the pituitary itself. In the European eel extensive attention has been directed towards understanding the different components of the brain-pituitary-gonad axis, but little is known about the regulation of upstream processes in the pituitary gland. In order to gain a broader mechanistic understanding of the eel pituitary gland, we have performed RNA-seq transcriptome profiling of the pituitary of prepubertal female silver eels. RNA-seq reads generated on the Illumina platform were mapped to the recently assembled European eel genome. The most abundant transcript in the eel pituitary codes for pro-opiomelanocortin, the precursor for hormones of the melanocortin system. Several genes putatively involved in downstream processing of pro-opiomelanocortin were manually annotated, and were found to be highly expressed, both by RNA-seq and by qPCR. The melanocortin system, which affects skin color, energy homeostasis and in other teleosts interacts with the reproductive system, has so far received limited attention in eels. However, since up to one third of the silver eel pituitary's mRNA pool encodes pro-opiomelanocortin, our results indicate that control of the melanocortin system is a major function of the eel pituitary.


Subject(s)
Anguilla/genetics , Melanocortins/genetics , Pituitary Gland/metabolism , Amino Acid Sequence , Animals , Female , Gene Expression , Gene Ontology , Melanocortins/chemistry , Molecular Sequence Data , Pro-Opiomelanocortin/chemistry , Pro-Opiomelanocortin/genetics , Transcriptome
11.
Article in English | MEDLINE | ID: mdl-23962432

ABSTRACT

European eels (Anguilla anguilla) migrate ~6000km towards their spawning area in the Sargasso Sea. Based on the recent discovery that males swim even more efficiently than females, it was predicted that males also would be able to swim ~6000km within six months. Additionally, eels do not mature naturally in captivity due to strong neural inhibition. Earlier, it was hypothesized that swimming exercise is a natural trigger to induce sexual maturation and may even result in full maturation. In the present study two groups of farmed male silver eels were subjected to either endurance swimming or resting for up to 6months. It was found that male eels were able to swim continuously for a total distance of 6670km within 6months. The body weight decrease in swimming and resting males after 6months was similar (<30g) underlining the extreme low energy cost of swimming. In contrast to our expectation long-term swimming did not induce sexual maturation in farmed silver eels, suggesting that swimming alone is not sufficient as a trigger for sexual maturation. In conclusion, male eels are efficient long distance swimmers and likely able to cover the distance to the Sargasso Sea within the expected time span of 6months.


Subject(s)
Anguilla/growth & development , Physical Exertion , Anguilla/physiology , Animal Migration , Animals , Body Weight , Male , Oceans and Seas , Physical Endurance , Spermatogenesis , Swimming/physiology , Testosterone/blood
12.
PLoS One ; 8(1): e53171, 2013.
Article in English | MEDLINE | ID: mdl-23308156

ABSTRACT

Deep RNA sequencing (RNA-seq) was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss) with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10) or swum (n = 10) for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes) was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides), a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.


Subject(s)
Oncorhynchus mykiss/genetics , RNA/genetics , Transcriptome , Animals , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Muscle, Skeletal/metabolism , Oncorhynchus mykiss/physiology , Sequence Analysis, RNA , Swimming
13.
PLoS One ; 7(11): e48931, 2012.
Article in English | MEDLINE | ID: mdl-23185286

ABSTRACT

Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs). We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4) based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R) in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R) on the number of Kissr paralogs in current teleosts.


Subject(s)
Evolution, Molecular , Fishes/genetics , Kisspeptins/metabolism , Receptors, Cell Surface/genetics , Animals , Cloning, Molecular , Conserved Sequence/genetics , DNA, Complementary/genetics , Fishes/growth & development , Gene Expression Profiling , Gene Expression Regulation , Genome/genetics , Humans , Molecular Sequence Data , Multigene Family , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synteny
14.
Gene ; 511(2): 195-201, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23026207

ABSTRACT

The Japanese eel is a much appreciated research object and very important for Asian aquaculture; however, its genomic resources are still limited. We have used a streamlined bioinformatics pipeline for the de novo assembly of the genome sequence of the Japanese eel from raw Illumina sequence reads. The total assembled genome has a size of 1.15 Gbp, which is divided over 323,776 scaffolds with an N50 of 52,849 bp, a minimum scaffold size of 200 bp and a maximum scaffold size of 1.14 Mbp. Direct comparison of a representative set of scaffolds revealed that all the Hox genes and their intergenic distances are almost perfectly conserved between the European and the Japanese eel. The first draft genome sequence of an organism strongly catalyzes research progress in multiple fields. Therefore, the Japanese eel genome sequence will provide a rich resource of data for all scientists working on this important fish species.


Subject(s)
Anguilla/genetics , Genome , Animals , Computational Biology
15.
Zebrafish ; 9(2): 59-67, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22715948

ABSTRACT

Research on common carp, Cyprinus carpio, is beneficial for zebrafish research because of resources available owing to its large body size, such as the availability of sufficient organ material for transcriptomics, proteomics, and metabolomics. Here we describe the shot gun sequencing of a clonal double-haploid common carp line. The assembly consists of 511891 scaffolds with an N50 of 17 kb, predicting a total genome size of 1.4-1.5 Gb. A detailed analysis of the ten largest scaffolds indicates that the carp genome has a considerably lower repeat coverage than zebrafish, whilst the average intron size is significantly smaller, making it comparable to the fugu genome. The quality of the scaffolding was confirmed by comparisons with RNA deep sequencing data sets and a manual analysis for synteny with the zebrafish, especially the Hox gene clusters. In the ten largest scaffolds analyzed, the synteny of genes is almost complete. Comparisons of predicted exons of common carp with those of the zebrafish revealed only few genes specific for either zebrafish or carp, most of these being of unknown function. This supports the hypothesis of an additional genome duplication event in the carp evolutionary history, which--due to a higher degree of compactness--did not result in a genome larger than that of zebrafish.


Subject(s)
Carps/genetics , Exome/genetics , Zebrafish/genetics , Animals , Genome/genetics , Introns/genetics , Synteny/genetics
16.
Mar Biotechnol (NY) ; 14(5): 583-90, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22527267

ABSTRACT

Freshwater eels (genus Anguilla), especially the species inhabiting the temperate areas such as the European, American and Japanese eels, are important aquaculture species. Although artificial reproduction has been attempted since the 1930s and large numbers of studies have been conducted, it has not yet fully succeeded. Problems in eel artificial breeding are highly diverse, for instance, lack of basic information about reproduction in nature, no appropriate food for larvae, high mortality, and high individual variation in adults in response to maturation induction. Over the last decade, genomic data have been obtained for a variety of aquatic organisms. Recent technological advances in sequencing and computation now enable the accumulation of genomic information even for non-model species. The draft genome of the European eel Anguilla anguilla has been recently determined using Illumina technology and transcriptomic data based on next generation sequencing have been emerging. Extensive genomic information will facilitate many aspects of the artificial reproduction of eels. Here, we review the progress in genome-wide studies of eels, including additional analysis of the European eel genome data, and discuss future directions and implications of genomic data for aquaculture.


Subject(s)
Aquaculture/methods , Eels/genetics , Genomics/methods , Animals , Breeding/methods , Gene Expression Profiling/methods , Gene Expression Profiling/veterinary , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/veterinary
17.
PLoS One ; 7(2): e32231, 2012.
Article in English | MEDLINE | ID: mdl-22384188

ABSTRACT

The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire.


Subject(s)
Eels/genetics , Genes, Duplicate , Homeodomain Proteins/genetics , Homeodomain Proteins/physiology , Multigene Family , Animals , Conserved Sequence , Emigration and Immigration , Europe , Female , Genome , Life Cycle Stages , Male , Molecular Sequence Data , RNA, Messenger/metabolism , Sequence Analysis, DNA , Time Factors
18.
Fish Physiol Biochem ; 37(2): 285-96, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21556699

ABSTRACT

The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17ß-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance.


Subject(s)
Anguilla/growth & development , Anguilla/physiology , Animal Migration/physiology , Sexual Maturation/physiology , Swimming/physiology , Air Sacs/parasitology , Anguilla/parasitology , Animals , Europe , Female , Models, Biological , Multivariate Analysis , Oocytes/cytology , Rivers , Vitellogenesis/physiology
19.
Naturwissenschaften ; 98(7): 631-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21594613

ABSTRACT

The journey of the European eel to the spawning area in the Sargasso Sea is still a mystery. Several trials have been carried out to follow migrating eels with pop-up satellite tags (PSATs), without much success. As eels are very efficient swimmers, tags likely interfere with their high swimming efficiency. Here we report a more than twofold increase in swimming cost caused by a regular small satellite tag. The impact was determined at a range of swimming speeds with and without tag in a 2-m swimming tunnel. These results help to explain why the previous use of PSATs to identify spawning sites in the Sargasso Sea was thus far unsuccessful.


Subject(s)
Anguilla/physiology , Animal Identification Systems/standards , Satellite Communications/instrumentation , Swimming , Telemetry/instrumentation , Anguilla/metabolism , Animal Migration/physiology , Animals , Female , Oceans and Seas , Oxygen Consumption/physiology , Satellite Communications/standards , Telemetry/adverse effects
20.
BMC Dev Biol ; 11: 16, 2011 Mar 13.
Article in English | MEDLINE | ID: mdl-21396126

ABSTRACT

BACKGROUND: Studies on artificial hybridization of different Anguilla species were conducted recently, i.e. female A. australis with male A. dieffenbachii, and female A. japonica with male A. anguilla. The existence of these artificial hybrids was however not demonstrated by independent genetic methods. Two species - A. anguilla and A. australis - that are phylogenetically close but have different sexual maturation times (12-25 weeks and 6-8 weeks, respectively), were expected to produce favourable hybrids for reproduction studies. RESULTS: A modification of the protocol for the reproduction of Anguilla japonica was used to produce eight-day Anguilla australis larvae, with a success rate of 71.4%. Thus ten out of 14 females produced eggs that could be fertilized, and three batches resulted in mass hatching. Hybrid larvae from female A. australis x male A. Anguilla survived for up to seven days post fertilization (dpf). The early development of the hybrid showed typical characteristics of A. anguilla tail pigmentation at 50 hours post fertilization (hpf), indicating expression of genes derived from the father. CONCLUSIONS: In this paper we describe the first production of hybrid larvae from male A. anguilla and female A. australis and their survival for up to 7 dpf. A species-specific nucleotide difference in the 18 S rDNA gene confirmed that genes from both A. australis and A. anguilla were present in the hybrids. The developmental stages of the hybrid eel embryos and larvae are described using high resolution images. Video footage also indicated a heart beat in 5-dpf larva.


Subject(s)
Anguilla/genetics , Hybridization, Genetic , RNA, Ribosomal, 18S/genetics , Anguilla/embryology , Anguilla/growth & development , Anguilla/physiology , Animals , Chimera/anatomy & histology , Chimera/embryology , Chimera/genetics , DNA, Ribosomal/genetics , Embryonic Development , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , Larva , Male , Ovulation Induction , Polymerase Chain Reaction , Reproduction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...