Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Dev Cell ; 56(13): 1945-1960.e7, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34192526

ABSTRACT

Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.


Subject(s)
Arabidopsis Proteins/genetics , Cyclin D3/genetics , Plant Development/genetics , Polycomb-Group Proteins/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Body Patterning/genetics , Cell Proliferation/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Histones/genetics , Methylation , Polycomb Repressive Complex 2/genetics , Seeds/genetics , Seeds/growth & development
2.
Plant Direct ; 4(7): e00221, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32766510

ABSTRACT

Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.

3.
Front Plant Sci ; 10: 1085, 2019.
Article in English | MEDLINE | ID: mdl-31608077

ABSTRACT

Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.

4.
PLoS One ; 11(6): e0156892, 2016.
Article in English | MEDLINE | ID: mdl-27276217

ABSTRACT

Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Oxidoreductases, N-Demethylating/chemistry , Salt Tolerance/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Aspartic Acid/chemistry , Aspartic Acid/genetics , Catalytic Domain , Glutamic Acid/chemistry , Glutamic Acid/genetics , Mutagenesis , Oxidoreductases, N-Demethylating/genetics , Protein Structure, Secondary , Species Specificity
5.
Mol Plant ; 9(7): 1028-39, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27109605

ABSTRACT

Gene amplification followed by functional diversification is a major force in evolution. A typical example of this is seen in the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, named after the Arabidopsis stem cell regulator WUSCHEL. Here we analyze functional divergence in the WOX gene family. Members of the WUS clade, except the cambium stem cell regulator WOX4, can substitute for WUS function in shoot and floral stem cell maintenance to different degrees. Stem cell function of WUS requires a canonical WUS-box, essential for interaction with TPL/TPR co-repressors, whereas the repressive EAR domain is dispensable and the acidic domain seems only to be required for female fertility. In contrast to the WUS clade, members of the ancient WOX13 and the WOX9 clades cannot support stem cell maintenance. Although the homeodomains are interchangeable between WUS and WOX9 clade members, a WUS-compatible homeodomain together with canonical WUS-box is not sufficient for stem cell maintenance. Our results suggest that WOX function in shoot and floral meristems of Arabidopsis is restricted to the modern WUS clade, suggesting that stem cell control is a derived function. Yet undiscovered functional domains in addition to the homeodomain and the WUS-box are necessary for this function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Stem Cells/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Meristem/cytology , Meristem/metabolism , Plant Shoots/cytology , Plant Shoots/metabolism , Stem Cells/physiology
6.
Sci Rep ; 6: 23310, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26984671

ABSTRACT

Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.


Subject(s)
Arabidopsis/microbiology , Cytokinins/biosynthesis , Pseudomonas fluorescens/metabolism , Pseudomonas syringae/growth & development , Chromatography, High Pressure Liquid , Cytokinins/analysis , Cytokinins/pharmacology , Plant Diseases/microbiology , Plant Growth Regulators/pharmacology , Plant Leaves/microbiology , Pseudomonas syringae/drug effects , Pseudomonas syringae/pathogenicity , Salicylic Acid/pharmacology , Tandem Mass Spectrometry
7.
Dev Cell ; 33(5): 576-88, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26028217

ABSTRACT

Stem cells in plants and animals are maintained pluripotent by signals from adjacent niche cells. In plants, WUSCHEL HOMEOBOX (WOX) transcription factors are central regulators of stem cell maintenance in different meristem types, yet their molecular mode of action has remained elusive. Here we show that in the Arabidopsis root meristem, the WOX5 protein moves from the root niche organizer, the quiescent center, into the columella stem cells, where it directly represses the transcription factor gene CDF4. This creates a gradient of CDF4 transcription, which promotes differentiation opposite to the WOX5 gradient, allowing stem cell daughter cells to exit the stem cell state. We further show that WOX5 represses CDF4 transcription by recruiting TPL/TPR co-repressors and the histone deacetylase HDA19, which consequently induces histone deacetylation at the CDF4 regulatory region. Our results show that chromatin-mediated repression of differentiation programs is a common strategy in plant and animal stem cell niches.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Cell Differentiation , Chromatin/genetics , Homeodomain Proteins/metabolism , Meristem/cytology , Plant Roots/cytology , Stem Cells/cytology , Acetylation , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Chromatin Immunoprecipitation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Homeodomain Proteins/genetics , In Situ Hybridization , Meristem/metabolism , Microarray Analysis , Microscopy, Confocal , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction , Stem Cell Niche , Stem Cells/metabolism
8.
J Biol Chem ; 290(30): 18770-81, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26037923

ABSTRACT

Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family.


Subject(s)
Arabidopsis Proteins/chemistry , Cell Wall/enzymology , Lignin/metabolism , Oxidoreductases, N-Demethylating/chemistry , Oxidoreductases, N-Demethylating/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Catalysis , Catalytic Domain , Crystallography, X-Ray , Kinetics , Oxidation-Reduction , Oxidoreductases, N-Demethylating/genetics , Protein Structure, Tertiary , Substrate Specificity
9.
J Exp Bot ; 66(13): 3669-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25944925

ABSTRACT

Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency.


Subject(s)
Brassica napus/metabolism , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/metabolism , Seasons , Brassica napus/genetics , Chlorophyll/metabolism , Cytokinins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glucosides/metabolism , Homeostasis , Peptide Hydrolases/metabolism , Photosynthesis , Plant Leaves/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics , Zeatin/metabolism
11.
J Exp Bot ; 66(18): 5531-42, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26002973

ABSTRACT

The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.


Subject(s)
Carbohydrate Metabolism , Plant Proteins/genetics , Plants/genetics , Proteomics/methods , Crops, Agricultural/enzymology , Crops, Agricultural/genetics , Plant Proteins/metabolism , Plants/enzymology
12.
Transgenic Res ; 24(4): 651-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25757741

ABSTRACT

Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Nicotiana/growth & development , Plants, Genetically Modified/growth & development , Sodium Chloride/pharmacology , Stress, Physiological , Arabidopsis Proteins/genetics , Droughts , Gene Expression Regulation, Plant , Lipase/genetics , Lipase/metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Nicotiana/drug effects , Nicotiana/immunology , Nicotiana/metabolism
13.
J Exp Bot ; 66(3): 863-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25392479

ABSTRACT

Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.


Subject(s)
Cell Wall/enzymology , Chenopodium/genetics , Droughts , Ectopic Gene Expression , Gene Expression Regulation, Plant , Plant Proteins/genetics , Solanum lycopersicum/physiology , beta-Fructofuranosidase/genetics , Chenopodium/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Photosynthesis , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , beta-Fructofuranosidase/metabolism
14.
Front Plant Sci ; 6: 1154, 2015.
Article in English | MEDLINE | ID: mdl-26734049

ABSTRACT

Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

15.
Front Plant Sci ; 6: 1251, 2015.
Article in English | MEDLINE | ID: mdl-26834764

ABSTRACT

Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool.

16.
PLoS One ; 9(11): e112946, 2014.
Article in English | MEDLINE | ID: mdl-25396746

ABSTRACT

Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Stress, Physiological , Abscisic Acid/pharmacology , Arabidopsis/classification , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cold Temperature , Droughts , Electrophoretic Mobility Shift Assay , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Plant/drug effects , Phylogeny , Promoter Regions, Genetic , Protein Binding , Salts/chemistry , Salts/pharmacology , Signal Transduction/drug effects , Transcriptional Activation , Tunicamycin/toxicity
17.
Phytopathology ; 104(12): 1283-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24941328

ABSTRACT

Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity.


Subject(s)
Nicotiana/immunology , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Plant Immunity , Pseudomonas syringae/physiology , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Cytokinins/metabolism , Ethylenes/metabolism , Host-Pathogen Interactions , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , Salicylic Acid/metabolism , Nicotiana/microbiology
19.
Plant Signal Behav ; 8(7): e24798, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23656869

ABSTRACT

Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication.


Subject(s)
Nicotiana/immunology , Plant Immunity , Pseudomonas syringae/physiology , Zeatin/physiology , Host-Pathogen Interactions , Plant Diseases , Protein Isoforms/physiology , Nicotiana/microbiology
20.
Plant Sci ; 195: 54-70, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22920999

ABSTRACT

Phytoalexins are pathogen induced low molecular weight compounds with antimicrobial activities derived from secondary metabolism. Following their identification, phytoalexins were directly incorporated into the network of plant defense responses. Due to their heterogeneity, the metabolic pathways involved in phytoalexin formation and in particular the regulatory mechanisms remained elusive. Consequently, research focus shifted to the characterization of other components of plant immunity such as defense signaling and resistance mechanisms, including components of systemic acquired and induced systemic resistance, effector and pathogen-associated molecular pattern triggered immunity as well as R-gene resistance. Despite the obtained knowledge on these immunity mechanisms, genetic engineering employing these mechanisms and classical breeding reached too low improvements in crop protection, probably because classical breeding focused on yield performance and taste, rather than pathogen resistance. The increasing demand for disease resistant crop species and the aim to reduce pesticide application therefore requires alternative approaches. Recent advances in the understanding of phytoalexin function, biosynthesis and regulation, in combination with novel methods of molecular engineering and advances in instrumental analysis, returned attention to phytoalexins as a potent target for improving crop protection. Based on this, the advantages as well as potential bottlenecks for molecular approaches of modulating inducible phytoalexins to improve crop protection are discussed.


Subject(s)
Crops, Agricultural/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Immunity/genetics , Plants, Genetically Modified/metabolism , Sesquiterpenes/metabolism , Crops, Agricultural/genetics , Genes, Plant , Genetic Engineering , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...