Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355792

ABSTRACT

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , C-Reactive Protein , DNA-Binding Proteins , Frontotemporal Lobar Degeneration , Nerve Net , Nerve Tissue Proteins , Neurons , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C-Reactive Protein/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Nerve Net/metabolism , Nerve Net/pathology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Reproducibility of Results
2.
Nat Commun ; 11(1): 5729, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184269

ABSTRACT

Vasocative-intestinal-peptide (VIP+) and somatostatin (SST+) interneurons are involved in modulating barrel cortex activity and perception during active whisking. Here we identify a developmental transition point of structural and functional rearrangements onto these interneurons around the start of active sensation at P14. Using in vivo two-photon Ca2+ imaging, we find that before P14, both interneuron types respond stronger to a multi-whisker stimulus, whereas after P14 their responses diverge, with VIP+ cells losing their multi-whisker preference and SST+ neurons enhancing theirs. Additionally, we find that Ca2+ signaling dynamics increase in precision as the cells and network mature. Rabies virus tracings followed by tissue clearing, as well as photostimulation-coupled electrophysiology reveal that SST+ cells receive higher cross-barrel inputs compared to VIP+ neurons at both time points. In addition, whereas prior to P14 both cell types receive direct input from the sensory thalamus, after P14 VIP+ cells show reduced inputs and SST+ cells largely shift to motor-related thalamic nuclei.


Subject(s)
Interneurons/metabolism , Somatostatin/metabolism , Vasoactive Intestinal Peptide/metabolism , Vibrissae/innervation , Vibrissae/metabolism , Animals , Calcium , Electrophysiology/methods , Female , Image Processing, Computer-Assisted , Male , Mice , Microscopy, Confocal , Models, Animal , Nervous System/growth & development , Neurons/metabolism , Rabbits , Thalamus/physiology , Vibrissae/diagnostic imaging , Vibrissae/growth & development
3.
Nat Methods ; 16(11): 1105-1108, 2019 11.
Article in English | MEDLINE | ID: mdl-31527839

ABSTRACT

Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).


Subject(s)
Microscopy, Fluorescence/instrumentation , Animals , Chick Embryo , Microscopy, Fluorescence/methods , Software
4.
Eur J Neurosci ; 50(6): 2955-2969, 2019 09.
Article in English | MEDLINE | ID: mdl-30941846

ABSTRACT

Rhythmic whisking behavior in rodents fully develops during a critical period about 2 weeks after birth, in parallel with the maturation of other sensory modalities and the onset of exploratory locomotion. How whisker-related sensory processing develops during this period in the primary somatosensory cortex (S1) remains poorly understood. Here, we characterized neuronal activity evoked by single- or dual-whisker stimulation patterns in developing S1, before, during and after the occurrence of active whisking. Employing multi-electrode recordings in all layers of barrel cortex in urethane-anesthetized mice, we find layer-specific changes in multi-unit activity for principal and neighboring barrel columns. While whisker stimulation evoked similar early responses (0-50 ms post-stimulus) across development, the late response (50-150 ms post-stimulus) decreased in all layers with age. Furthermore, peak onset times and the duration of the late response decreased in all layers across age groups. Responses to paired-pulse stimulation showed increases in spiking precision and in paired-pulse ratios in all cortical layers during development. Sequential activation of two neighboring whiskers with varying stimulus intervals evoked distinct response profiles in the activated barrel columns, depending on the direction and temporal separation of the stimuli. In conclusion, our findings indicate that the temporal sharpening of sensory-evoked activity coincides with the onset of active whisking.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Vibrissae/physiology , Animals , Female , Male , Mice , Neuronal Plasticity/physiology
5.
Biomed Opt Express ; 8(7): 3213-3231, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28717563

ABSTRACT

We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

6.
Cereb Cortex ; 27(10): 4835-4850, 2017 10 01.
Article in English | MEDLINE | ID: mdl-27620976

ABSTRACT

Rodent rhythmic whisking behavior matures during a critical period around 2 weeks after birth. The functional adaptations of neocortical circuitry during this developmental period remain poorly understood. Here, we characterized stimulus-evoked neuronal activity across all layers of mouse barrel cortex before, during, and after the onset of whisking behavior. Employing multi-electrode recordings and 2-photon calcium imaging in anesthetized mice, we tested responses to rostro-caudal whisker deflections, axial "tapping" stimuli, and their combination from postnatal day 10 (P10) to P28. Within this period, whisker-evoked activity of neurons displayed a general decrease in layer 2/3 (L2/3) and L4, but increased in L5 and L6. Distinct alterations in neuronal response adaptation during the 2-s period of stimulation at ~5 Hz accompanied these changes. Moreover, single-unit analysis revealed that response selectivity in favor of either lateral deflection or axial tapping emerges in deeper layers within the critical period around P14. For superficial layers we confirmed this finding using calcium imaging of L2/3 neurons, which also exhibited emergence of response selectivity as well as progressive sparsification and decorrelation of evoked responses around P14. Our results demonstrate layer-specific development of sensory responsiveness and response selectivity in mouse somatosensory cortex coinciding with the onset of exploratory behavior.


Subject(s)
Neuronal Plasticity/physiology , Sensory Deprivation/physiology , Somatosensory Cortex/physiology , Vibrissae/physiology , Afferent Pathways/physiology , Animals , Animals, Newborn , Female , Male , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/physiology , Physical Stimulation/methods
7.
Brain Struct Funct ; 221(1): 317-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25284126

ABSTRACT

The inhibitory action of Nogo-A on axonal growth has been well described. However, much less is known about the effects that Nogo-A could exert on the plasticity of neuronal circuits under physiological conditions. We investigated the effects of Nogo-A knock-out (KO) on visual function of adult mice using the optokinetic response (OKR) and the monocular deprivation (MD)-induced OKR plasticity and analyzed the anatomical organization of the eye-specific retinal projections. The spatial frequency sensitivity was higher in intact Nogo-A KO than in wild-type (WT) mice. After MD, Nogo-A KO mice reached a significantly higher spatial frequency and contrast sensitivity. Bilateral ablation of the visual cortex did not affect the OKR sensitivity before MD but reduced the MD-induced enhancement of OKR by approximately 50% in Nogo-A KO and WT mice. These results suggest that cortical and subcortical brain structures contribute to the OKR plasticity. The tracing of retinal projections to the dorsal lateral geniculate nucleus (dLGN) revealed that the segregation of eye-specific terminals was decreased in the adult Nogo-A KO dLGN compared with WT mice. Strikingly, MD of the right eye led to additional desegregation of retinal projections in the left dLGN of Nogo-A KO but not in WT mice. In particular, MD promoted ectopic varicosity formation in Nogo-A KO dLGN axons. The present data show that Nogo-A restricts visual experience-driven plasticity of the OKR and plays a role in the segregation and maintenance of retinal projections to the brain.


Subject(s)
Blindness/metabolism , Myelin Proteins/deficiency , Neuronal Plasticity , Nystagmus, Optokinetic , Optic Nerve/metabolism , Retina/metabolism , Vision, Ocular , Visual Cortex/metabolism , Animals , Blindness/genetics , Blindness/physiopathology , Contrast Sensitivity , Disease Models, Animal , Gene Deletion , Genotype , Male , Mice, Inbred C57BL , Mice, Knockout , Myelin Proteins/genetics , Nogo Proteins , Optic Nerve/physiopathology , Phenotype , Photic Stimulation , Retina/physiopathology , Spatial Navigation , Time Factors , Visual Cortex/physiopathology , Visual Cortex/surgery , Visual Pathways/metabolism , Visual Pathways/physiopathology
8.
Neuron ; 85(5): 942-58, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25741722

ABSTRACT

An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity.


Subject(s)
Gene Targeting/methods , Integrases/genetics , Neurons/physiology , Optogenetics/methods , Animals , Hippocampus/chemistry , Hippocampus/physiology , Integrases/biosynthesis , Mice , Mice, Transgenic , Neurons/chemistry , Organ Culture Techniques , Visual Cortex/chemistry , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...