Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 44(19-20): 1548-1558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37732546

ABSTRACT

Biopharmaceutical production takes place in complex processes which should be thoroughly understood. Therefore, the iConsensus project focuses on developing a monitoring platform integrating several process analytical technology tools for integrated, automated monitoring of the biopharmaceutical process. Water-soluble vitamin monitoring using (microchip) capillary electrophoresis (CE) is part of this platform. This work comprises the development of conventional CE methods as the first part towards integrated vitamin monitoring. The vitamins were divided based on their physical-chemical properties to develop two robust methods. Previously, a method for the analysis of cationic vitamins (pyridoxine, pyridoxal, pyridoxamine, thiamine and nicotinamide) in cell culture medium was developed. This work focused on the development of a micellar electrokinetic chromatography method for anionic and neutral vitamins (riboflavin, d-calcium pantothenate, biotin, folic acid, cyanocobalamin and ascorbic acid). By employing multivariate design of experiments, the background electrolyte (BGE) could be optimised within one experiment testing only 11 BGEs. The optimised BGE conditions were 200 mM borate with 77 mM sodium dodecyl sulphate at a pH of 8.6. Using this BGE, all above-mentioned cationic, anionic and neutral vitamins could be separated in clean samples. In cell culture medium, most anionic and neutral vitamins could be separated. Combining the two methods allows for analysis of cationic, anionic and neutral vitamins in cell culture medium samples. The next step towards integrated vitamin monitoring includes transfer to microchip CE. Due to the lack of fast and reliable methods for vitamin monitoring, the developed capillary methods could be valuable as stand-alone at-line process analytical technology solutions as well.

2.
Electrophoresis ; 44(15-16): 1247-1257, 2023 08.
Article in English | MEDLINE | ID: mdl-37079448

ABSTRACT

Capillary zone electrophoresis ultraviolet (CZE-UV) has become increasingly popular for the charge heterogeneity determination of mAbs and vaccines. The ε-aminocaproic acid (eACA) CZE-UV method has been used as a rapid platform method. However, in the last years, several issues have been observed, for example, loss in electrophoretic resolution or baseline drifts. Evaluating the role of eACA on the reported issues, various laboratories were requested to provide their routinely used eACA CZE-UV methods, and background electrolyte compositions. Although every laboratory claimed to use the He et al. eACA CZE-UV method, most methods actually deviate from He's. Subsequently, a detailed interlaboratory study was designed wherein two commercially available mAbs (Waters' Mass Check Standard mAb [pI 7] and NISTmAb [pI 9]) were provided to each laboratory, along with two detailed eACA CZE-UV protocols for a short-end, high-speed, and a long-end, high-resolution method. Ten laboratories participated each using their own instruments, and commodities, showing excellence method performance (relative standard deviations [RSDs] of percent time-corrected main peak areas from 0.2% to 1.9%, and RSDs of migration times from 0.7% to 1.8% [n = 50 per laboratory], analysis times in some cases as short as 2.5 min). This study clarified that eACA is not the main reason for the abovementioned variations.


Subject(s)
Aminocaproic Acid , Antibodies, Monoclonal , Antibodies, Monoclonal/analysis , Electrophoresis, Capillary/methods , Electrolytes
3.
Electrophoresis ; 44(1-2): 96-106, 2023 01.
Article in English | MEDLINE | ID: mdl-36239141

ABSTRACT

Monoclonal antibodies (mAbs) have become an important class of biopharmaceuticals used for the treatment of various diseases. Their quantification during the manufacturing process is important. In this work, a capillary zone electrophoresis (CZE) method was developed for the monitoring of the mAb concentration during cell-culture processes. CZE method development rules are outlined, particularly discussing various capillary coatings, such as a neutral covalent polyvinyl alcohol coating, a dynamic successive multiple ionic-polymer coating, and dynamic coatings using background electrolyte additives such as triethanolamine (T-EthA) and triethylamine. The dynamic T-EthA coating resulted in most stable electro-osmotic flows and most efficient peak shapes. The method is validated over the range 0.1-10 mg/ml, with a linear range of 0.08-1.3 mg/ml and an extended range of 1-10 mg/ml by diluting samples in the latter concentration range 10-fold in water. The intraday precision and accuracy were 2%-12% and 88%-107%, respectively, and inter-day precision and accuracy were 4%-9% and 93%-104%, respectively. The precision and accuracy of the lowest concentration level (0.08 mg/ml) were slightly worse and still well in scope for monitoring purposes. The presented method proved applicable for analysing in-process cell-culture samples from different cell-culture processes and is possibly well suited as platform method.


Subject(s)
Antibodies, Monoclonal , Biological Products , Antibodies, Monoclonal/analysis , Electrophoresis, Capillary/methods , Electrolytes , Polyvinyl Alcohol
4.
J Anal Methods Chem ; 2022: 2819855, 2022.
Article in English | MEDLINE | ID: mdl-36248056

ABSTRACT

This paper describes a capillary electrophoresis method for the determination of the cationic B-vitamins thiamine, nicotinamide, pyridoxine, pyridoxal, and pyridoxamine in untreated cell culture medium samples. The effects of the buffering capacity, the mobility of the coion, and the preconditioning solution on the robustness of the method were investigated. Using a 100 mM phosphoric acid and 55 mM triethanolamine background electrolyte at pH 2.3 and capillary preconditioning with 1 M NaOH, all five vitamins could be separated with good resolution. Preliminary method validation data over the range 10-110 µM for undiluted samples, with 10 µM being the lower range limit of quantification QL, showed accuracy recoveries of 94-104%, and migration time and peak area repeatabilities within 0.4% RSD and 2.6% RSD, respectively.

5.
Electrophoresis ; 43(9-10): 1068-1090, 2022 05.
Article in English | MEDLINE | ID: mdl-34739151

ABSTRACT

A broad range of CE applications from our organization is reviewed to give a flavor of the use of CE within the field of vaccine analyses. Applicability of CE for viral vaccine characterization, and release and stability testing of seasonal influenza virosomal vaccines, universal subunit influenza vaccines, Sabin inactivated polio vaccines (sIPV), and adenovirus vector vaccines were demonstrated. Diverse CZE, CE-SDS, CGE, and cIEF methods were developed, validated, and applied for virus, protein, posttranslational modifications, DNA, and excipient concentration determinations, as well as for the integrity and composition verifications, and identity testing (e.g., CZE for intact virus particles, CE-SDS application for hemagglutinin quantification and influenza strain identification, chloride or bromide determination in process samples). Results were supported by other methods such as RP-HPLC, dynamic light scattering (DLS), and zeta potential measurements. Overall, 16 CE methods are presented that were developed and applied, comprising six adenovirus methods, five viral protein methods, and methods for antibodies determination of glycans, host cell-DNA, excipient chloride, and process impurity bromide. These methods were applied to support in-process control, release, stability, process- and product characterization and development, and critical reagent testing. Thirteen methods were validated. Intact virus particles were analyzed at concentrations as low as 0.8 pmol/L. Overall, CE took viral vaccine testing beyond what was previously possible, improved process and product understanding, and, in total, safety, efficacy, and quality.


Subject(s)
Influenza, Human , Viral Vaccines , Bromides , Chlorides , Electrophoresis, Capillary/methods , Excipients , Humans , Viral Proteins/analysis , Viral Vaccines/analysis
6.
Electrophoresis ; 43(9-10): 922-929, 2022 05.
Article in English | MEDLINE | ID: mdl-34510488

ABSTRACT

The rapidly growing, competitive biopharmaceutical market requires tight bioprocess monitoring. An integrated, automated platform for the routine online/at-line monitoring of key factors in the cell culture medium could greatly improve process monitoring. Mono- and disaccharides, as the main energy and carbon source, are one of these key factors. A CE-LIF method was developed for the analysis of several mono- and disaccharides, considering requirements and restrictions for analysis in an integrated, automated monitoring platform, such as the possibility for miniaturization to microchip electrophoresis. Analysis was performed after fluorescent derivatization with 8-aminopyrene-1,3,6-trisulfonic acid. The derivatisation reaction and the separation BGE were optimized using design of experiments. The developed method is applicable to the complex matrix of cell culture medium and proved transferable to microchip electrophoresis.


Subject(s)
Electrophoresis, Microchip , Cell Culture Techniques , Culture Media , Disaccharides , Electrophoresis, Capillary/methods , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...