Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 10: 1108114, 2023.
Article in English | MEDLINE | ID: mdl-36936408

ABSTRACT

Introduction: Video-based clinical rating plays an important role in assessing dystonia and monitoring the effect of treatment in dyskinetic cerebral palsy (CP). However, evaluation by clinicians is time-consuming, and the quality of rating is dependent on experience. The aim of the current study is to provide a proof-of-concept for a machine learning approach to automatically assess scoring of dystonia using 2D stick figures extracted from videos. Model performance was compared to human performance. Methods: A total of 187 video sequences of 34 individuals with dyskinetic CP (8-23 years, all non-ambulatory) were filmed at rest during lying and supported sitting. Videos were scored by three raters according to the Dyskinesia Impairment Scale (DIS) for arm and leg dystonia (normalized scores ranging from 0-1). Coordinates in pixels of the left and right wrist, elbow, shoulder, hip, knee and ankle were extracted using DeepLabCut, an open source toolbox that builds on a pose estimation algorithm. Within a subset, tracking accuracy was assessed for a pretrained human model and for models trained with an increasing number of manually labeled frames. The mean absolute error (MAE) between DeepLabCut's prediction of the position of body points and manual labels was calculated. Subsequently, movement and position features were calculated from extracted body point coordinates. These features were fed into a Random Forest Regressor to train a model to predict the clinical scores. The model performance trained with data from one rater evaluated by MAEs (model-rater) was compared to inter-rater accuracy. Results: A tracking accuracy of 4.5 pixels (approximately 1.5 cm) could be achieved by adding 15-20 manually labeled frames per video. The MAEs for the trained models ranged from 0.21 ± 0.15 for arm dystonia to 0.14 ± 0.10 for leg dystonia (normalized DIS scores). The inter-rater MAEs were 0.21 ± 0.22 and 0.16 ± 0.20, respectively. Conclusion: This proof-of-concept study shows the potential of using stick figures extracted from common videos in a machine learning approach to automatically assess dystonia. Sufficient tracking accuracy can be reached by manually adding labels within 15-20 frames per video. With a relatively small data set, it is possible to train a model that can automatically assess dystonia with a performance comparable to human scoring.

2.
PLoS Comput Biol ; 19(2): e1010462, 2023 02.
Article in English | MEDLINE | ID: mdl-36758069

ABSTRACT

Microbial specialised metabolism is full of valuable natural products that are applied clinically, agriculturally, and industrially. The genes that encode their biosynthesis are often physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs consist of multiple groups of co-evolving genes called sub-clusters that are responsible for the biosynthesis of a specific chemical moiety in a natural product. Sub-clusters therefore provide an important link between the structures of a natural product and its BGC, which can be leveraged for predicting natural product structures from sequence, as well as for linking chemical structures and metabolomics-derived mass features to BGCs. While some initial computational methodologies have been devised for sub-cluster detection, current approaches are not scalable, have only been run on small and outdated datasets, or produce an impractically large number of possible sub-clusters to mine through. Here, we constructed a scalable method for unsupervised sub-cluster detection, called iPRESTO, based on topic modelling and statistical analysis of co-occurrence patterns of enzyme-coding protein families. iPRESTO was used to mine sub-clusters across 150,000 prokaryotic BGCs from antiSMASH-DB. After annotating a fraction of the resulting sub-cluster families, we could predict a substructure for 16% of the antiSMASH-DB BGCs. Additionally, our method was able to confirm 83% of the experimentally characterised sub-clusters in MIBiG reference BGCs. Based on iPRESTO-detected sub-clusters, we could correctly identify the BGCs for xenorhabdin and salbostatin biosynthesis (which had not yet been annotated in BGC databases), as well as propose a candidate BGC for akashin biosynthesis. Additionally, we show for a collection of 145 actinobacteria how substructures can aid in linking BGCs to molecules by correlating iPRESTO-detected sub-clusters to MS/MS-derived Mass2Motifs substructure patterns. This work paves the way for deeper functional and structural annotation of microbial BGCs by improved linking of orphan molecules to their cognate gene clusters, thus facilitating accelerated natural product discovery.


Subject(s)
Biological Products , Tandem Mass Spectrometry , Metabolomics , Bacteria/genetics , Multigene Family
3.
Sensors (Basel) ; 22(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35746168

ABSTRACT

Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation either directly in the doctor's office or from video recordings using standardized scales. Both methods lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens in a clinical environment. The goal of this study was to investigate whether it is feasible to use home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled inertial sensors and machine learning. Video and sensor data during both active and rest situations from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and clinically scored the dystonia of the extremities on a 0-4 scale, following the definition of amplitude of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it is possible to detected dystonia automatically using individually trained models. The predictions could complement standard dyskinetic CP measures by providing frequent, objective, real-world assessments that could enhance clinical care. A generalized model, trained with data from other subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely due to a lack of training data and dissimilarities between subjects. However, the generalized model is reasonably able to distinguish between high and lower scores. Future research should focus on gathering more high-quality data and study how the models perform over the whole day.


Subject(s)
Cerebral Palsy , Dystonia , Dystonic Disorders , Adolescent , Cerebral Palsy/diagnosis , Child , Dystonia/diagnosis , Humans , Machine Learning , Severity of Illness Index , Smartphone , Technology
4.
J Cheminform ; 13(1): 84, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34715914

ABSTRACT

Mass spectrometry data is one of the key sources of information in many workflows in medicine and across the life sciences. Mass fragmentation spectra are generally considered to be characteristic signatures of the chemical compound they originate from, yet the chemical structure itself usually cannot be easily deduced from the spectrum. Often, spectral similarity measures are used as a proxy for structural similarity but this approach is strongly limited by a generally poor correlation between both metrics. Here, we propose MS2DeepScore: a novel Siamese neural network to predict the structural similarity between two chemical structures solely based on their MS/MS fragmentation spectra. Using a cleaned dataset of > 100,000 mass spectra of about 15,000 unique known compounds, we trained MS2DeepScore to predict structural similarity scores for spectrum pairs with high accuracy. In addition, sampling different model varieties through Monte-Carlo Dropout is used to further improve the predictions and assess the model's prediction uncertainty. On 3600 spectra of 500 unseen compounds, MS2DeepScore is able to identify highly-reliable structural matches and to predict Tanimoto scores for pairs of molecules based on their fragment spectra with a root mean squared error of about 0.15. Furthermore, the prediction uncertainty estimate can be used to select a subset of predictions with a root mean squared error of about 0.1. Furthermore, we demonstrate that MS2DeepScore outperforms classical spectral similarity measures in retrieving chemically related compound pairs from large mass spectral datasets, thereby illustrating its potential for spectral library matching. Finally, MS2DeepScore can also be used to create chemically meaningful mass spectral embeddings that could be used to cluster large numbers of spectra. Added to the recently introduced unsupervised Spec2Vec metric, we believe that machine learning-supported mass spectral similarity measures have great potential for a range of metabolomics data processing pipelines.

5.
J Exp Biol ; 224(Pt 6)2021 03 12.
Article in English | MEDLINE | ID: mdl-33568444

ABSTRACT

Innate defensive responses such as freezing or escape are essential for animal survival. Mice show defensive behaviour to stimuli sweeping overhead, like a bird cruising the sky. Here, we tested this in young male mice and found that mice reduced their defensive freezing after sessions with a stimulus passing overhead repeatedly. This habituation is stimulus specific, as mice freeze again to a novel shape. Habituation occurs regardless of the visual field location of the repeated stimulus. The mice generalized over a range of sizes and shapes, but distinguished objects when they differed in both size and shape. Innate visual defensive responses are thus strongly influenced by previous experience as mice learn to ignore specific stimuli.


Subject(s)
Escape Reaction , Habituation, Psychophysiologic , Animals , Learning , Male , Mice , Mice, Inbred C57BL
6.
Front Neural Circuits ; 12: 75, 2018.
Article in English | MEDLINE | ID: mdl-30327591

ABSTRACT

Selecting behavioral outputs in a dynamic environment is the outcome of integrating multiple information streams and weighing possible action outcomes with their value. Integration depends on the medial prefrontal cortex (mPFC), but how mPFC neurons encode information necessary for appropriate behavioral adaptation is poorly understood. To identify spiking patterns of mPFC during learned behavior, we extracellularly recorded neuronal action potential firing in the mPFC of rats performing a whisker-based "Go"/"No-go" object localization task. First, we identify three functional groups of neurons, which show different degrees of spiking modulation during task performance. One group increased spiking activity during correct "Go" behavior (positively modulated), the second group decreased spiking (negatively modulated) and one group did not change spiking. Second, the relative change in spiking was context-dependent and largest when motor output had contextual value. Third, the negatively modulated population spiked more when rats updated behavior following an error compared to trials without integration of error information. Finally, insufficient spiking in the positively modulated population predicted erroneous behavior under dynamic "No-go" conditions. Thus, mPFC neuronal populations with opposite spike modulation characteristics differentially encode context and behavioral updating and enable flexible integration of error corrections in future actions.


Subject(s)
Action Potentials/physiology , Adaptation, Physiological/physiology , Learning/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Vibrissae/physiology , Animals , Male , Random Allocation , Rats , Rats, Wistar , Vibrissae/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...