Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538940

ABSTRACT

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Sci Adv ; 4(12): eaau2768, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30547085

ABSTRACT

Giant mineral dust particles (>75 µm in diameter) found far from their source have long puzzled scientists. These wind-blown particles affect the atmosphere's radiation balance, clouds, and the ocean carbon cycle but are generally ignored in models. Here, we report new observations of individual giant Saharan dust particles of up to 450 µm in diameter sampled in air over the Atlantic Ocean at 2400 and 3500 km from the west African coast. Past research points to fast horizontal transport, turbulence, uplift in convective systems, and electrical levitation of particles as possible explanations for this fascinating phenomenon. We present a critical assessment of these mechanisms and propose several lines of research we deem promising to further advance our understanding and modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...