Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 70(3): 516-530.e6, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706535

ABSTRACT

Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Lectins/metabolism , Neoplasm Proteins/metabolism , Polysaccharides/metabolism , Cell Line , Cell Line, Tumor , Glycoproteins/metabolism , Glycosylation , HEK293 Cells , Humans , K562 Cells , Protein Folding , Protein Translocation Systems/metabolism
2.
Trends Mol Med ; 19(6): 336-44, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23562344

ABSTRACT

Aging is an important risk factor for many debilitating diseases, including cancer and neurodegeneration. In model organisms, interfering with metabolic signaling pathways, including the insulin/insulin-like growth factor (IGF) 1 (IIS) and TOR pathways, can protect against age-related pathologies and increase lifespan. Recent studies in multiple organisms have implicated tryptophan metabolism as a powerful regulator of age-related diseases and lifespan. Its high conservation throughout evolution has enabled studies that begin to dissect the contribution of individual enzymes and metabolites. Here, we focus on the emerging view of tryptophan metabolism as a pathway that integrates environmental and metabolic signals to regulate animal biology and health.


Subject(s)
Aging/metabolism , Tryptophan/metabolism , Aging/pathology , Animals , Humans , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 109(37): 14912-7, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22927396

ABSTRACT

Toxicity of aggregation-prone proteins is thought to play an important role in aging and age-related neurological diseases like Parkinson and Alzheimer's diseases. Here, we identify tryptophan 2,3-dioxygenase (tdo-2), the first enzyme in the kynurenine pathway of tryptophan degradation, as a metabolic regulator of age-related α-synuclein toxicity in a Caenorhabditis elegans model. Depletion of tdo-2 also suppresses toxicity of other heterologous aggregation-prone proteins, including amyloid-ß and polyglutamine proteins, and endogenous metastable proteins that are sensors of normal protein homeostasis. This finding suggests that tdo-2 functions as a general regulator of protein homeostasis. Analysis of metabolite levels in C. elegans strains with mutations in enzymes that act downstream of tdo-2 indicates that this suppression of toxicity is independent of downstream metabolites in the kynurenine pathway. Depletion of tdo-2 increases tryptophan levels, and feeding worms with extra L-tryptophan also suppresses toxicity, suggesting that tdo-2 regulates proteotoxicity through tryptophan. Depletion of tdo-2 extends lifespan in these worms. Together, these results implicate tdo-2 as a metabolic switch of age-related protein homeostasis and lifespan. With TDO and Indoleamine 2,3-dioxygenase as evolutionarily conserved human orthologs of TDO-2, intervening with tryptophan metabolism may offer avenues to reducing proteotoxicity in aging and age-related diseases.


Subject(s)
Aging/physiology , Homeostasis/physiology , Tryptophan Oxygenase/metabolism , Tryptophan/metabolism , alpha-Synuclein/toxicity , Aging/metabolism , Amyloid beta-Peptides/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Chromatography, Liquid , Computational Biology , DNA Primers/genetics , Fertility/genetics , Immunoblotting , Longevity/genetics , Peptides/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry , Tryptophan/chemistry , Tryptophan Oxygenase/antagonists & inhibitors
4.
Chemphyschem ; 12(3): 673-680, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21308945

ABSTRACT

Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.


Subject(s)
Amyloid/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caenorhabditis elegans/metabolism , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Cell ; 142(4): 601-12, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20723760

ABSTRACT

Fibrillar protein aggregates are the major pathological hallmark of several incurable, age-related, neurodegenerative disorders. These aggregates typically contain aggregation-prone pathogenic proteins, such as amyloid-beta in Alzheimer's disease and alpha-synuclein in Parkinson's disease. It is, however, poorly understood how these aggregates are formed during cellular aging. Here we identify an evolutionarily highly conserved modifier of aggregation, MOAG-4, as a positive regulator of aggregate formation in C. elegans models for polyglutamine diseases. Inactivation of MOAG-4 suppresses the formation of compact polyglutamine aggregation intermediates that are required for aggregate formation. The role of MOAG-4 in driving aggregation extends to amyloid-beta and alpha-synuclein and is evolutionarily conserved in its human orthologs SERF1A and SERF2. MOAG-4/SERF appears to act independently from HSF-1-induced molecular chaperones, proteasomal degradation, and autophagy. Our results suggest that MOAG-4/SERF regulates age-related proteotoxicity through a previously unexplored pathway, which will open up new avenues for research on age-related, neurodegenerative diseases.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cellular Senescence , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/metabolism , Proteins/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caenorhabditis elegans Proteins/chemistry , Cell Line , Cell Line, Tumor , Humans , Intracellular Signaling Peptides and Proteins , Mice , Nerve Tissue Proteins/chemistry , Peptides/metabolism , Proteins/chemistry , alpha-Synuclein/metabolism
6.
EMBO J ; 28(23): 3758-70, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19875982

ABSTRACT

The ATP-dependent protein chaperone heat-shock protein 70 (Hsp70) displays broad anti-aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of alpha-synuclein (alphaSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation-prone polypeptides. We show a nucleotide-dependent interaction between Hsp70 and alphaSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with alphaSyn. Such a co-aggregation phenomenon can be prevented in vitro by the co-chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of alphaSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.


Subject(s)
Carrier Proteins/physiology , HSP70 Heat-Shock Proteins/metabolism , Homeostasis/physiology , Multiprotein Complexes/metabolism , Parkinson Disease/metabolism , Tumor Suppressor Proteins/physiology , alpha-Synuclein/metabolism , Adenosine Triphosphate/physiology , Amyloid/antagonists & inhibitors , Amyloid/biosynthesis , Animals , Animals, Genetically Modified , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Carrier Proteins/antagonists & inhibitors , Cell Line, Tumor , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Molecular Chaperones , Multiprotein Complexes/antagonists & inhibitors , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Parkinson Disease/etiology , Peptides/antagonists & inhibitors , Peptides/physiology , Protein Folding , Protein Stability , Rats , Tumor Suppressor Proteins/antagonists & inhibitors , alpha-Synuclein/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...