Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 14(1): 147, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27226006

ABSTRACT

BACKGROUND: Integration of whole-heart activation simulations and inverse potential mapping (IPM) could benefit the guidance and planning of electrophysiological procedures. Routine clinical application requires a fast and adaptable workflow. These requirements limit clinical translation of existing simulation models. This study proposes a comprehensive finite element model (FEM) based whole-heart computational workflow suitable for IPM and simulations. METHODS: Three volunteers and eight patients with premature ventricular contractions underwent body surface potential (BSP) acquisition followed by a cardiac MRI (CMR) scan. The cardiac volumes were segmented from the CMR images using custom written software. The feasibility to integrate tissue-characteristics was assessed by generating meshes with virtual edema and scar. Isochronal activation maps were constructed by identifying the fastest route through the cardiac volume using the Möller-Trumbore and Floyd-Warshall algorithms. IPM's were reconstructed from the BSP's. RESULTS: Whole-heart computational meshes were generated within seconds. The first point of atrial activation on IPM was located near the crista terminalis of the superior vena cave into the right atrium. The IPM demonstrated the ventricular epicardial breakthrough at the attachment of the moderator band with the right ventricular free wall. Simulations of sinus rhythm were successfully performed. The conduction through the virtual edema and scar meshes demonstrated delayed activation or a complete conductional block respectively. CONCLUSION: The proposed FEM based whole-heart computational workflow offers an integrated platform for cardiac electrical assessment using simulations and IPM. This workflow can incorporate patient-specific electrical parameters, perform whole-heart cardiac activation simulations and accurately reconstruct cardiac activation sequences from BSP's.


Subject(s)
Action Potentials/physiology , Computer Simulation , Heart/physiology , Workflow , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged , Sinoatrial Node/physiology
2.
Neth Heart J ; 22(12): 542-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25339204

ABSTRACT

In recent years, the clinical importance of cardiac magnetic resonance (CMR) imaging has increased dramatically. As a consequence, more clinicians need to become familiar with this imaging modality, including its technical challenges. MR images are obtained through a physical process of proton excitation and the reception of resonating signals. Besides these physical principles, the motion of the heart and diaphragm, together with the presence of fast flowing blood in the vicinity, pose challenges to the acquisition of high-quality diagnostic images and are an important cause of image artefacts. Artefacts may render images non-diagnostic and measurements unreliable, and most artefacts can only be corrected during the acquisition itself. Hence, timely and accurate recognition of the type of artefact is crucial. This paper provides a concise description of the CMR acquisition process and the underlying MR physics for clinical cardiologists and trainees. Frequently observed CMR artefacts are illustrated and possible adjustments to minimise or eliminate these artefacts are explained.

3.
Int J Cardiol ; 175(3): 400-8, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25012494

ABSTRACT

Left atrial catheter ablation is an established non-pharmacological therapy for the treatment of atrial fibrillation. The importance of a noninvasive multimodality imaging approach is emphasized by the current guidelines for the various phases of the ablation work-up e.g. patient identification, therapy guidance and procedural evaluation. Advances in the capabilities of imaging modalities and the increasing cost of healthcare warrant a review of the multimodality approach. This review discusses the application of cardiac imaging for pulmonary vein and left atrial ablation divided into stages: pre-procedural stage (assessment of left atrial dimensions, left atrial appendage thrombus and pulmonary vein anatomy), peri-procedural stage (integration of anatomical and electrical information) and post-procedural stage (evaluation of efficacy by assessment of tissue properties). Each section is dedicated to one of the subtopics of a stage, allowing a thorough comparison to be made between the strengths and weaknesses of the different imaging modalities and the identification of one that exhibits the potential for a single technique approach.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Catheter Ablation/trends , Multimodal Imaging/trends , Practice Guidelines as Topic/standards , Catheter Ablation/standards , Echocardiography, Transesophageal/standards , Echocardiography, Transesophageal/trends , Forecasting , Humans , Magnetic Resonance Imaging, Cine/standards , Magnetic Resonance Imaging, Cine/trends , Multimodal Imaging/standards , Tomography, X-Ray Computed/standards , Tomography, X-Ray Computed/trends
4.
Neth Heart J ; 22(6): 269-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24733688

ABSTRACT

Magnetic resonance imaging (MRI) has evolved into an essential diagnostic modality for the evaluation of all patient categories. This gain in popularity coincided with an increase in the number of implanted cardiac implantable electronic devices (CIEDs). Therefore, questions arose with regard to the MRI compatibility of these devices. Various investigators have reported the harmless performance of MRI in patients with conventional (non-MRI conditional) devices. The recently published European Society of Cardiology (ESC) guidelines on cardiac pacing and cardiac resynchronisation therapy (CRT) indicate that MRI can be safely performed in patients with an implanted pacemaker or ICD (MRI conditional or not), as long as strict safety conditions are met. This is a major modification of the former general opinion that patients with a pacemaker or ICD were not eligible to undergo MRI. This review paper attempts to elucidate the current situation for practising cardiologists by providing a clear overview of the potential life-threatening interactions and discuss safety measures to be taken prior to and during scanning. An overview of all available MRI conditional devices and their individual restrictions is given. In addition, an up-to-date safety protocol is provided that can be used to ensure patient safety before, during and after the scan. Key points • Historically, MRI examination of patients with a CIED has been considered hazardous. • Ongoing advances in technology and increasing usage of MRI in clinical practice have led to the introduction of MRI conditional CIEDs and to more lenient regulations on the examination of patients with non-conditional CIEDs. • MRI investigations can be performed safely in selected patients when adhering to a standardised up-to-date safety protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...