Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 12: 345-355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38560508

ABSTRACT

Noncommunicable Chronic Diseases (NCD) are a socioeconomic burden and considered one of the major health challenges for coming decades. Mitochondrial dysfunction has been implicated mechanistically in their pathophysiology. Therefore, targeting mitochondria holds great promise to improve clinical outcomes in NCDs. SUL-138, an orally bioavailable small molecule efficacious from 0.5 mg/kg, improves mitochondrial function during disease in several preclinical animal models. As preparation for a First-in-Human (FIH) trial, SUL-138 was investigated in 30-day GLP repeated dose toxicity studies in rat and minipig, selected based on their comparability with human metabolism, to determine toxicokinetics, potential toxicity and its reversibility. Rats were allocated to either vehicle, 27, 136 or 682 mg/kg SUL-138 dose groups and minipigs were allocated to either vehicle, 16, 82 or 409 mg/kg. Treatment occurred orally for 30 days followed by a recovery period of 14 days. During these studies clinical observations, toxicokinetic, clinical pathology, necropsy and histopathology evaluations were performed. There was significant systemic exposure to SUL-138 and toxicokinetics was characterized by a rapid absorption and elimination. In the rat, toxicokinetics was dose-proportional and AUC0-tlast ratios in both species indicated that SUL-138 does not accumulate in vivo. No treatment-related adverse effects were observed for dose levels up to 136 and 82 mg/kg/day in rat and minipig respectively. In conclusion, these preclinical studies demonstrate that SUL-138 is well tolerated after repeated administration in rat and minipig, with NOAELs of 136 and 82 mg/kg/day, respectively.

2.
Int J Mol Sci ; 22(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066693

ABSTRACT

Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 µg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.


Subject(s)
Cigarette Smoking/adverse effects , Neutrophils/pathology , Piperazines/therapeutic use , Animals , Bronchi/pathology , Bronchoalveolar Lavage Fluid/cytology , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Interleukin-8/biosynthesis , Lung/pathology , Mice, Inbred BALB C , Neutrophils/drug effects , Oxidative Stress/drug effects , Piperazines/administration & dosage , Piperazines/chemistry , Piperazines/pharmacology , Pneumonia/drug therapy , Protein Kinases/metabolism
3.
Nephrol Dial Transplant ; 33(12): 2128-2138, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29660027

ABSTRACT

Background: Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Methods: Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. Results: H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. Conclusions: The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.


Subject(s)
Acute Kidney Injury/prevention & control , Chromans/chemistry , Cryoprotective Agents/pharmacology , Hypothermia/complications , Reperfusion Injury/prevention & control , Rewarming/adverse effects , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Chromans/pharmacology , Chromans/therapeutic use , Cryoprotective Agents/chemistry , Humans , Male , Mitochondria/metabolism , Organ Preservation Solutions , Oxidative Stress , Rats , Rats, Wistar
4.
Biomaterials ; 119: 43-52, 2017 03.
Article in English | MEDLINE | ID: mdl-28006657

ABSTRACT

Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.


Subject(s)
Adipose Tissue/cytology , Chromans/chemistry , Cryopreservation/methods , Cryoprotective Agents/chemistry , Organ Preservation Solutions/chemistry , Stem Cells/chemistry , Stem Cells/cytology , Adipose Tissue/chemistry , Cell Culture Techniques , Cell Differentiation , Cell Survival , Cells, Cultured , Humans
5.
PLoS One ; 6(7): e22568, 2011.
Article in English | MEDLINE | ID: mdl-21829469

ABSTRACT

Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2)S production by the endogenous enzyme cystathionine-ß-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H(2)S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2)S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2)S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2)S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.


Subject(s)
Cystathionine beta-Synthase/metabolism , Dopamine/pharmacology , Hydrogen Sulfide/metabolism , Hypothermia/drug therapy , Rewarming/adverse effects , Serotonin/pharmacology , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cells, Cultured , Cricetinae , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/genetics , Dopamine Agents/pharmacology , Humans , Hypothermia/etiology , Kidney/cytology , Kidney/drug effects , Kidney/enzymology , Male , Mesangial Cells/drug effects , Mesangial Cells/enzymology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Serotonin Receptor Agonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...