Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 30(1): 49-58, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38232229

ABSTRACT

In this paper, the capability for quantifying the composition of Ba-doped SrTiO layers from an atom probe measurement was explored. Rutherford backscattering spectrometry and time-of-flight/energy elastic recoil detection were used to benchmark the composition where the amount of titanium was intentionally varied between samples. The atom probe results showed a significant divergence from the benchmarked composition. The cause was shown to be a significant oxygen underestimation (≳14 at%). The ratio between oxygen and titanium for the samples varied between 2.6 and 12.7, while those measured by atom probe tomography were lower and covered a narrower range between 1.4 and 1.7. This difference was found to be associated with the oxygen and titanium predominantly field evaporating together as a molecular ion. The evaporation fields and bonding chemistries determined showed inconsistencies for explaining the oxygen underestimation and ion species measured. The measured ion charge state was in excellent agreement with that predicted by the Kingham postionization theory. Only by considering the measured ion species, their evaporation fields, the coordination chemistry, the analysis conditions, and some recently reported density functional theory modeling for oxide field emission were we able to postulate a field emission and oxygen neutral desorption process that may explain our results.

3.
ACS Appl Mater Interfaces ; 15(21): 26175-26189, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37194926

ABSTRACT

The complexity of the water adsorption-desorption mechanism at the interface of transition metal dichalcogenides (TMDs) and its impact on their current transport are not yet fully understood. Here, our work investigates the swift intercalation of atmospheric adsorbates at the TMD and sapphire interface and between two TMD monolayers and probes its influence on their electrical properties. The adsorbates consist mainly of hydroxyl-based (OH) species in the subsurface region suggesting persistent water intercalation even under vacuum conditions, as determined by time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and scanning tunneling microscopy (STM). Water intercalates there rapidly, within the order of a few minutes after being exposed to ambient atmosphere, this process tends to be partly reversible under (ultra)high vacuum, as observed by time-dependent scanning probe microscopy (SPM) based conductivity and ToF-SIMS measurements. A significant enhancement of the electronic properties is observed with the complete desorption of intercalated water clusters because of the pressure-induced melting effect under the tip of the SPM probe. Conversely, it also indicates that the characterization of TMD samples is substantially affected in air, in inert environments, and to some extent even in a vacuum if water intercalation is present. More importantly, STM analysis has uncovered a correlation between water intercalation and the presence of defects, showcasing their role in the gradual degradation of the material as it ages.

4.
Anal Chem ; 94(5): 2408-2415, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35076209

ABSTRACT

This study reports on the application of secondary ion mass spectrometry (SIMS) for examining thin (20-50 nm) chemically amplified resist films on silicon. SIMS depth profiling was carried out using a gas cluster ion beam to ensure minimal sputter-induced damage to the organic constituents of interest. Specific attention concerned the distribution of the photo acid generator (PAG) molecule within these films, along with the photo-induced fragmentation occurring on extreme ultra-violet photo exposure. Positive secondary ion spectra were collected using a traditional time of flight (ToF)-SIMS and the latest generation IONTOF Hybrid SIMS instrumentation equipped with an OrbitrapTM mass analyzer. Tandem mass spectrometry (MS/MS) capability within the OrbitrapTM secondary ion column was utilized to verify that the C19H17S+ secondary ion did indeed have the molecular structure consistent with the PAG structure. The superior mass resolving power of the OrbitrapTM mass analyzer (∼20× of the ToF mass analyzer) along with improved mass accuracy (a few ppm) proved pivotal in the mass spectral and depth profile analysis of these films. This was not the case for the ToF-SIMS experiments, as the mass spectra, as well as the associated depth profiles, exhibited severe molecular (isobaric) interferences.


Subject(s)
Spectrometry, Mass, Secondary Ion , Tandem Mass Spectrometry , Molecular Structure , Silicon , Spectrometry, Mass, Secondary Ion/methods , Tandem Mass Spectrometry/methods
5.
Nano Lett ; 21(24): 10409-10415, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34882420

ABSTRACT

Magnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry. This enables localized, minimally invasive magnetic imaging with sensitivity down to 3 µT Hz-1/2. The imaging reveals the presence of weak magnetic inhomogeneities inside in-plane magnetized nanowires that are largely undetectable with standard metrology and can be related to local fluctuations of the NWs' saturation magnetization. In addition, the strong magnetic field confinement in the nanowires allows for the study of the interaction between the stray magnetic field and the nitrogen-vacancy sensor, thus clarifying the contrasting formation mechanisms for technologically relevant magnetic nanostructures.


Subject(s)
Diamond , Nanowires , Diamond/chemistry , Magnetic Fields , Magnetics/methods , Nitrogen/chemistry
6.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796703

ABSTRACT

The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO2 and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve. The main limitations are imposed by the inherent intertwining of ferroelectric and dielectric properties, the role of strain, interfaces and electric field-mediated phase, and polarization changes. In this work, using Si-doped HfO2 as a material system, we performed a correlative study with four scanning probe techniques for the local sensing of intrinsic ferroelectricity on the oxide surface. Putting each technique in perspective, we demonstrated that different origins of spatially resolved contrast can be obtained, thus highlighting possible crosstalk not originated by a genuine ferroelectric response. By leveraging the strength of each method, we showed how intrinsic processes in ultrathin dielectrics, i.e., electronic leakage, existence and generation of energy states, charge trapping (de-trapping) phenomena, and electrochemical effects, can influence the sensed response. We then proceeded to initiate hysteresis loops by means of tip-induced spectroscopic cycling (i.e., "wake-up"), thus observing the onset of oxide degradation processes associated with this step. Finally, direct piezoelectric effects were studied using the high pressure resulting from the probe's confinement, noticing the absence of a net time-invariant piezo-generated charge. Our results are critical in providing a general framework of interpretation for multiple nanoscale processes impacting ferroelectricity in doped-hafnia and strategies for sensing it.

7.
Anal Chem ; 92(16): 11413-11419, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32664722

ABSTRACT

With the continuous miniaturization and increasing complexity of the devices used in nanotechnology, there is a pressing need for characterization techniques with nm-scale 3D-spatial resolution. Unfortunately, techniques like Secondary Ion Mass Spectrometry (SIMS) fail to reach the required lateral resolution. For this reason, new concepts and approaches, including the combination of different complementary techniques, have been developed in over the past years to try to overcome some of the challenges. Beyond the problem of spatial resolution in a 3D SIMS experiment, one is also faced with the impact of changes in topography during the analysis. These are quite difficult to identify because they originate from the different sputter rates of the various materials and or phases in a heterogeneous system and are notorious at the interfaces between organic and inorganic layers. As each of these materials will erode at a different velocity, accurate 3D-analysis will require means to establish a spatially resolved relation between ion bombardment time and depth. Inevitably such a nonhomogeneous erosion will lead to the development of surface topography. The impact of these effects can be overcome provided one can capture the time and spatially dependent surface erosion (velocity) with high spatial resolution during the course of a profiling experiment. Incorporating a Scanning Probe Microscope (SPM) unit which provides topography measurements with high spatial resolution, into a SIMS tool (e.g., Time of Flight (ToF) SIMS) with means to alternate between SPM and SIMS measurements, is one approach to meet that demand for complementary topographical information allowing accurate 3D chemical imaging. In this paper, the result of integrating a SPM module into a ToF-SIMS system is presented illustrating the improvements in 3D data accuracy which can be obtained when analyzing complex 3D-systems.

8.
Ultramicroscopy ; 206: 112813, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31351311

ABSTRACT

Scaling and non-planar architectures are key factors helping to advance the semiconductor field. Accurate 3-dimensional atomic scale information is therefore sought but this presents a significant metrology challenge. Atom probe tomography has emerged as a strong candidate to fulfill this role, but before it can be considered an accurate and precise metrology method, numerous difficulties need to be overcome. In this paper we highlight some of these in respect to the analysis of GaN/AlGaN device heterostructures. Although a significant range of conditions for accurate GaN stoichiometric analysis were readily achieved, a more limited range of analysis conditions that yielded an accurate Al site fraction for AlGaN was observed because the Al was typically overestimated. Moreover, the low index planes of the material resulted in pole and zone lines given their lower evaporation fields and are clearly observed on the detector due to related ion trajectory aberrations representative of local field variations present. As a result of the strong compositional bias of GaN analysis with field, the Ga and N concentrations were found to vary by ∼20 at.% over the tip apex. For the AlGaN this variation was smaller (<4 at.%), even for a similar magnitude of tip field variation.

9.
J Phys Chem B ; 110(35): 17425-9, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16942080

ABSTRACT

X-ray photoelectron spectroscopy (XPS) along with inductively coupled plasma analysis (ICP-AE) and Raman spectroscopy have been used to define the location and to quantify the amount of iodine in HiPco SWNT samples loaded with molecular I(2) via sublimation (I(2)-SWNTs). The exterior-adsorbed I(2) can be removed (as I(-)) by reducing the sample of filled nanotubes with Na(0)/THF or by heating the I(2)-SWNTs to 300 degrees C (without reduction), leaving I(2) contained only within the interior of the SWNTs (I(2)@SWNTs) as proven by XPS. These I(2)@SWNTs contain approximately 25 wt % of I(2) and are stable without the loss of I(2) even after exposure to additional reduction with Na(0)/THF or upon heating to ca. 500 degrees C.


Subject(s)
Chemistry, Physical/methods , Iodine/chemistry , Spectrometry, X-Ray Emission/methods , Spectrum Analysis, Raman/methods , Adsorption , Crystallization , Crystallography , Hot Temperature , Kinetics , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanotechnology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...