Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Atherosclerosis ; 395: 117616, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944895

ABSTRACT

Atherosclerosis manifests itself differently in men and women with respect to plaque initiation, progression and plaque composition. The observed delay in plaque progression in women is thought to be related to the hormonal status of women. Also features associated with the vulnerability of plaques to rupture seem to be less frequently present in women compared to men. Current invasive and non-invasive imaging modalities allow for visualization of plaque size, composition and high risk vulnerable plaque features. Moreover, image based modeling gives access to local shear stress and shear stress-related plaque growth. In this review, current knowledge on sex-related differences in plaque size, composition, high risk plaque features and shear stress related plaque growth in carotid and coronary arteries obtained from imaging are summarized.


Subject(s)
Carotid Arteries , Coronary Artery Disease , Coronary Vessels , Plaque, Atherosclerotic , Stress, Mechanical , Humans , Female , Male , Sex Factors , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Coronary Artery Disease/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/pathology , Coronary Angiography , Predictive Value of Tests , Risk Factors , Disease Progression
2.
Sci Rep ; 12(1): 5434, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361847

ABSTRACT

A significant amount of vascular thrombotic events are associated with rupture of the fibrous cap that overlie atherosclerotic plaques. Cap rupture is however difficult to predict due to the heterogenous composition of the plaque, unknown material properties, and the stochastic nature of the event. Here, we aim to create tissue engineered human fibrous cap models with a variable but controllable collagen composition, suitable for mechanical testing, to scrutinize the reciprocal relationships between composition and mechanical properties. Myofibroblasts were cultured in 1 × 1.5 cm-sized fibrin-based constrained gels for 21 days according to established (dynamic) culture protocols (i.e. static, intermittent or continuous loading) to vary collagen composition (e.g. amount, type and organization). At day 7, a soft 2 mm ∅ fibrin inclusion was introduced in the centre of each tissue to mimic the soft lipid core, simulating the heterogeneity of a plaque. Results demonstrate reproducible collagenous tissues, that mimic the bulk mechanical properties of human caps and vary in collagen composition due to the presence of a successfully integrated soft inclusion and the culture protocol applied. The models can be deployed to assess tissue mechanics, evolution and failure of fibrous caps or complex heterogeneous tissues in general.


Subject(s)
Plaque, Atherosclerotic , Collagen , Fibrosis , Humans
3.
J Nucl Cardiol ; 29(5): 2487-2496, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34318395

ABSTRACT

BACKGROUND: Calcification and inflammation are atherosclerotic plaque compositional biomarkers that have both been linked to stroke risk. The aim of this study was to evaluate their co-existing prevalence in human carotid plaques with respect to plaque phenotype to determine the value of hybrid imaging for the detection of these biomarkers. METHODS: Human carotid plaque segments, obtained from endarterectomy, were incubated in [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt), targeting Leukocyte Function-associated Antigen-1 (LFA-1) on leukocytes. By performing SPECT/CT, both inflammation from DANBIRT uptake and calcification from CT imaging were assessed. Plaque phenotype was classified using histology. RESULTS: On a total plaque level, comparable levels of calcification volume existed with different degrees of inflammation and vice versa. On a segment level, an inverse relationship between calcification volume and inflammation was evident in highly calcified segments, which classify as fibrocalcific, stable plaque segments. In contrast, segments with little or no calcification presented with a moderate to high degree of inflammation, often coinciding with the more dangerous fibrous cap atheroma phenotype. CONCLUSION: Calcification imaging alone can only accurately identify highly calcified, stable, fibrocalcific plaques. To identify high-risk plaques, with little or no calcification, hybrid imaging of calcification and inflammation could provide diagnostic benefit.


Subject(s)
Calcinosis , Carotid Artery Diseases , Plaque, Atherosclerotic , Biomarkers , Calcinosis/diagnostic imaging , Calcinosis/pathology , Carotid Artery Diseases/diagnostic imaging , Humans , Indium Radioisotopes , Inflammation/complications , Inflammation/diagnostic imaging , Lymphocyte Function-Associated Antigen-1 , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Single Photon Emission Computed Tomography Computed Tomography
4.
Front Bioeng Biotechnol ; 9: 828577, 2021.
Article in English | MEDLINE | ID: mdl-35155418

ABSTRACT

The role of wall shear stress (WSS) in atherosclerotic plaque development is evident, but the relation between WSS and plaque composition in advanced atherosclerosis, potentially resulting in plaque destabilization, is a topic of discussion. Using our previously developed image registration pipeline, we investigated the relation between two WSS metrics, time-averaged WSS (TAWSS) and the oscillatory shear index (OSI), and the local histologically determined plaque composition in a set of advanced human carotid plaques. Our dataset of 11 carotid endarterectomy samples yielded 87 histological cross-sections, which yielded 511 radial bins for analysis. Both TAWSS and OSI values were subdivided into patient-specific low, mid, and high tertiles. This cross-sectional study shows that necrotic core (NC) size and macrophage area are significantly larger in areas exposed to high TAWSS or low OSI. Local TAWSS and OSI tertile values were generally inversely related, as described in the literature, but other combinations were also found. Investigating the relation between plaque vulnerability features and different combinations of TAWSS and OSI tertile values revealed a significantly larger cap thickness in areas exposed to both low TAWSS and low OSI. In conclusion, our study confirmed previous findings, correlating high TAWSS to larger macrophage areas and necrotic core sizes. In addition, our study demonstrated new relations, correlating low OSI to larger macrophage areas, and a combination of low TAWSS and low OSI to larger cap thickness.

5.
PLoS One ; 14(6): e0217271, 2019.
Article in English | MEDLINE | ID: mdl-31170183

ABSTRACT

Wall shear stress (WSS), the frictional force exerted on endothelial cells by blood flow, is hypothesised to influence atherosclerotic plaque growth and composition. We developed a methodology for image registration of MR and histology images of advanced human carotid plaques and corresponding WSS data, obtained by MRI and computational fluid dynamics. The image registration method requires four types of input images, in vivo MRI, ex vivo MRI, photographs of transversally sectioned plaque tissue and histology images. These images are transformed to a shared 3D image domain by applying a combination of rigid and non-rigid registration algorithms. Transformation matrices obtained from registration of these images are used to transform subject-specific WSS data to the shared 3D image domain as well. WSS values originating from the 3D WSS map are visualised in 2D on the corresponding lumen locations in the histological sections and divided into eight radial segments. In each radial segment, the correlation between WSS values and plaque composition based on histological parameters can be assessed. The registration method was successfully applied to two carotid endarterectomy specimens. The resulting matched contours from the imaging modalities had Hausdorff distances between 0.57 and 0.70 mm, which is in the order of magnitude of the in vivo MRI resolution. We simulated the effect of a mismatch in the rigid registration of imaging modalities on WSS results by relocating the WSS data with respect to the stack of histology images. A 0.6 mm relocation altered the mean WSS values projected on radial bins on average by 0.59 Pa, compared to the output of original registration. This mismatch of one image slice did not change the correlation between WSS and plaque thickness. In conclusion, we created a method to investigate correlations between WSS and plaque composition.


Subject(s)
Carotid Arteries , Carotid Artery Diseases , Endarterectomy , Hemorheology , Magnetic Resonance Angiography , Plaque, Atherosclerotic , Shear Strength , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Carotid Arteries/surgery , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/surgery , Female , Humans , Male , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/physiopathology , Plaque, Atherosclerotic/surgery
6.
Front Med (Lausanne) ; 6: 39, 2019.
Article in English | MEDLINE | ID: mdl-30915335

ABSTRACT

This review addresses nuclear SPECT and PET imaging in small animals in relation to the atherosclerotic disease process, one of our research topics of interest. Imaging of atherosclerosis in small animal models is challenging, as it operates at the limits of current imaging possibilities regarding sensitivity, and spatial resolution. Several topics are discussed, including technical considerations that apply to image acquisition, reconstruction, and analysis. Moreover, molecules developed for or applied in these small animal nuclear imaging studies are listed, including target-directed molecules, useful for imaging organs or tissues that have elevated expression of the target compared to other tissues, and molecules that serve as substrates for metabolic processes. Differences between animal models and human pathophysiology that should be taken into account during translation from animal to patient as well as differences in tracer behavior in animal vs. man are also described. Finally, we give a future outlook on small animal radionuclide imaging in atherosclerosis, followed by recommendations. The challenges and solutions described might be applicable to other research fields of health and disease as well.

7.
J Nucl Cardiol ; 26(5): 1697-1704, 2019 10.
Article in English | MEDLINE | ID: mdl-29536351

ABSTRACT

BACKGROUND: 111In-DOTA-butylamino-NorBIRT (DANBIRT) is a novel radioligand which binds to Leukocyte Function-associated Antigen-1 (LFA-1), expressed on inflammatory cells. This study evaluated 111In-DANBIRT for the visualization of atherosclerotic plaque inflammation in mice. METHODS AND RESULTS: ApoE-/- mice, fed an atherogenic diet up to 20 weeks (n = 10), were imaged by SPECT/CT 3 hours post injection of 111In-DANBIRT (~ 200 pmol, ~ 40 MBq). Focal spots of 111In-DANBIRT were visible in the aortic arch of all animals, with an average Target-to-Background Ratio (TBR) of 1.7 ± 0.5. In vivo imaging results were validated by ex vivo SPECT/CT imaging, with a TBR up to 11.5 (range 2.6 to 11.5). Plaques, identified by Oil Red O lipid-staining on excised arteries, co-localized with 111In-DANBIRT uptake as determined by ex vivo autoradiography. Subsequent histological processing and in vitro autoradiography confirmed 111In-DANBIRT uptake at plaque areas containing CD68 expressing macrophages and LFA-1 expressing inflammatory cells. Ex vivo incubation of a human carotid endarterectomy specimen with 111In-DANBIRT (~ 950 nmol, ~ 190 MBq) for 2 hours showed heterogeneous plaque uptake on SPECT/CT, after which immunohistochemical analysis demonstrated co-localization of 111In-DANBIRT uptake and CD68 and LFA-1 expressing cells. CONCLUSIONS: Our results indicate the potential of radiolabeled DANBIRT as a relevant imaging radioligand for non-invasive evaluation of atherosclerotic inflammation.


Subject(s)
Hydantoins/metabolism , Indium Radioisotopes/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Plaque, Atherosclerotic/diagnostic imaging , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Azo Compounds/pharmacology , Female , Immunohistochemistry , Inflammation/diagnostic imaging , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Single Photon Emission Computed Tomography Computed Tomography
8.
Sci Rep ; 8(1): 14014, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228313

ABSTRACT

The heart rate lowering drug Ivabradine was shown to improve cardiac outcome in patients with previous heart failure. However, in patients without heart failure, no beneficial effect of Ivabradine was observed. Animal studies suggested a preventive effect of Ivabradine on atherosclerosis which was due to an increase in wall shear stress (WSS), the blood flow-induced frictional force exerted on the endothelium, triggering anti-inflammatory responses. However, data on the effect of Ivabradine on WSS is sparse. We aim to study the effect of Ivabradine on (i) the 3D WSS distribution over a growing plaque and (ii) plaque composition. We induced atherosclerosis in ApoE-/- mice by placing a tapered cast around the right common carotid artery (RCCA). Five weeks after cast placement, Ivabradine was administered via drinking water (15 mg/kg/day) for 2 weeks, after which the RCCA was excised for histology analyses. Before and after Ivabradine treatment, animals were imaged with Doppler Ultrasound to measure blood velocity. Vessel geometry was obtained using contrast-enhanced micro-CT. Time-averaged WSS during systole, diastole and peak WSS was subsequently computed. Ivabradine significantly decreased heart rate (459 ± 28 bpm vs. 567 ± 32 bpm, p < 0.001). Normalized peak flow significantly increased in the Ivabradine group (124.2% ± 40.5% vs. 87.3% ± 25.4%, p < 0.05), reflected by an increased normalized WSS level during systole (110.7% ± 18.4% vs. 75.4% ± 24.6%, p < 0.05). However, plaque size or composition including plaque area, relative necrotic core area and macrophage content were not altered in mice treated with Ivabradine compared to controls. We conclude that increased WSS in response to Ivabradine treatment did not affect plaque progression in a murine model.


Subject(s)
Atherosclerosis/drug therapy , Disease Models, Animal , Heart Rate/physiology , Hemodynamics , Ivabradine/pharmacology , Plaque, Atherosclerotic/prevention & control , Animals , Atherosclerosis/pathology , Cardiovascular Agents/pharmacology , Heart Rate/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic/pathology , Stress, Mechanical
9.
R Soc Open Sci ; 5(3): 171447, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657758

ABSTRACT

Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE-/- mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition.

10.
Neth Heart J ; 23(1): 42-3, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25408513
11.
Ultrasound Int Open ; 1(2): E67-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-27689156

ABSTRACT

AIM: The actual occurrence of spontaneous plaque rupture in mice has been a matter of debate. We report on an in vivo observation of the actual event of possible plaque disruption in a living ApoE(-/-) mouse. METHODS AND RESULTS: During live contrast-enhanced ultrasonography of a 50-week-old ApoE(-/-) male mouse, symptoms suggesting plaque disruption in the brachiocephalic artery were observed. Histological analysis confirmed the presence of advanced atherosclerotic lesions with dissections and intraplaque hemorrhage in the affected brachiocephalic trunk, pointing towards plaque rupture as the cause of the observed event. However, we did not detect a luminal thrombus or cap rupture, which is a key criterion for plaque rupture in human atherosclerosis. CONCLUSION: This study reports the real-time occurrence of a possible plaque rupture in a living ApoE(-/-) mouse.

12.
J R Soc Interface ; 7(42): 91-103, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-19401309

ABSTRACT

In order to study the role of blood-tissue interaction in the developing chicken embryo heart, detailed information about the haemodynamic forces is needed. In this study, we present the first in vivo measurements of the three-dimensional distribution of wall shear stress (WSS) in the outflow tract (OFT) of an embryonic chicken heart. The data are obtained in a two-step process: first, the three-dimensional flow fields are measured during the cardiac cycle using scanning microscopic particle image velocimetry; second, the location of the wall and the WSS are determined by post-processing flow velocity data (finding velocity gradients at locations where the flow approaches zero). The results are a three-dimensional reconstruction of the geometry, with a spatial resolution of 15-20 microm, and provides detailed information about the WSS in the OFT. The most significant error is the location of the wall, which results in an estimate of the uncertainty in the WSS values of 20 per cent.


Subject(s)
Blood Flow Velocity/physiology , Chick Embryo/physiology , Heart/embryology , Heart/physiology , Microscopy, Confocal/methods , Models, Cardiovascular , Rheology/methods , Animals , Chickens , Computer Simulation , Shear Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL