Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 42(5): 486-492, 2015 May.
Article in English | MEDLINE | ID: mdl-32480694

ABSTRACT

High-throughput automated plant phenotyping has recently received a lot of attention. Leaf area is an important characteristic in understanding plant performance, but time-consuming and destructive to measure accurately. In this research, we describe a method to use a histogram of image intensities to automatically measure plant leaf area of tall pepper (Capsicum annuum L.) plants in the greenhouse. With a device equipped with several cameras, images of plants were recorded at 5-cm intervals over a height of 3m, at a recording distance of less than 60cm. The images were reduced to a small set of principal components that defined the design matrix in a regression model for predicting manually measured leaf area as obtained from destructive harvesting. These regression calibrations were performed for six different developmental times. In addition, development of leaf area was investigated by fitting linear relations between predicted leaf area and time, with special attention given to the genotype by time interaction and its genetic basis in the form of quantitative trait loci (QTLs). The experiment comprised parents, F1 progeny and eight genotypes of a recombinant inbred population of pepper. Although the current trial contained a limited number of genotypes, an earlier identified QTL related to leaf area growth could be confirmed. Therefore, image analysis, as presented in this paper, provides a powerful and efficient way to study and identify the genetic basis of growth and developmental processes in plants.

2.
Food Chem Toxicol ; 79: 5-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25455888

ABSTRACT

Pesticide risk assessment is hampered by worst-case assumptions leading to overly pessimistic assessments. On the other hand, cumulative health effects of similar pesticides are often not taken into account. This paper describes models and a web-based software system developed in the European research project ACROPOLIS. The models are appropriate for both acute and chronic exposure assessments of single compounds and of multiple compounds in cumulative assessment groups. The software system MCRA (Monte Carlo Risk Assessment) is available for stakeholders in pesticide risk assessment at mcra.rivm.nl. We describe the MCRA implementation of the methods as advised in the 2012 EFSA Guidance on probabilistic modelling, as well as more refined methods developed in the ACROPOLIS project. The emphasis is on cumulative assessments. Two approaches, sample-based and compound-based, are contrasted. It is shown that additional data on agricultural use of pesticides may give more realistic risk assessments. Examples are given of model and software validation of acute and chronic assessments, using both simulated data and comparisons against the previous release of MCRA and against the standard software DEEM-FCID used by the Environmental Protection Agency in the USA. It is shown that the EFSA Guidance pessimistic model may not always give an appropriate modelling of exposure.


Subject(s)
Ecotoxicology/methods , Environmental Pollution/adverse effects , Food Contamination , Models, Statistical , Pesticide Residues/toxicity , Pesticides/toxicity , European Union , Food Contamination/prevention & control , Guidelines as Topic , Humans , Internet , Monte Carlo Method , Risk Assessment/standards , Software , Software Validation
3.
Front Plant Sci ; 5: 48, 2014.
Article in English | MEDLINE | ID: mdl-24600461

ABSTRACT

Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20(°)) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential.

4.
Funct Plant Biol ; 39(11): 870-877, 2012 Nov.
Article in English | MEDLINE | ID: mdl-32480837

ABSTRACT

Most high-throughput systems for automated plant phenotyping involve a fixed recording cabinet to which plants are transported. However, important greenhouse plants like pepper are too tall to be transported. In this research we developed a system to automatically measure plant characteristics of tall pepper plants in the greenhouse. With a device equipped with multiple cameras, images of plants are recorded at a 5cm interval over a height of 3m. Two types of features are extracted: (1) features from a 3D reconstruction of the plant canopy; and (2) statistical features derived directly from RGB images. The experiment comprised 151 genotypes of a recombinant inbred population of pepper, to examine the heritability and quantitative trait loci (QTL) of the features. Features extracted from the 3D reconstruction of the canopy were leaf size and leaf angle, with heritabilities of 0.70 and 0.56 respectively. Three QTL were found for leaf size, and one for leaf angle. From the statistical features, plant height showed a good correlation (0.93) with manual measurements, and QTL were in accordance with QTL of manual measurements. For total leaf area, the heritability was 0.55, and two of the three QTL found by manual measurement were found by image analysis.

5.
Ann Bot ; 108(6): 1121-34, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856634

ABSTRACT

BACKGROUND AND AIMS: The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional-structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity. METHODS: The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model. KEY RESULTS: The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios. CONCLUSIONS: The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.


Subject(s)
Flowering Tops/physiology , Light , Models, Biological , Photosynthesis , Plant Leaves/physiology , Rosa/physiology , Absorption , Computer Simulation , Flowering Tops/growth & development , Flowering Tops/radiation effects , Monte Carlo Method , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Physiological Phenomena , Plant Shoots/growth & development , Plant Shoots/physiology , Plant Shoots/radiation effects , Rosa/growth & development , Rosa/radiation effects
6.
Food Chem Toxicol ; 47(12): 2926-40, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19150381

ABSTRACT

A statistical model is presented extending the integrated probabilistic risk assessment (IPRA) model of van der Voet and Slob [van der Voet, H., Slob, W., 2007. Integration of probabilistic exposure assessment and probabilistic hazard characterisation. Risk Analysis, 27, 351-371]. The aim is to characterise the health impact due to one or more chemicals present in food causing one or more health effects. For chemicals with hardly any measurable safety problems we propose health impact characterisation by margins of exposure. In this probabilistic model not one margin of exposure is calculated, but rather a distribution of individual margins of exposure (IMoE) which allows quantifying the health impact for small parts of the population. A simple bar chart is proposed to represent the IMoE distribution and a lower bound (IMoEL) quantifies uncertainties in this distribution. It is described how IMoE distributions can be combined for dose-additive compounds and for different health effects. Health impact assessment critically depends on a subjective valuation of the health impact of a given health effect, and possibilities to implement this health impact valuation step are discussed. Examples show the possibilities of health impact characterisation and of integrating IMoE distributions. The paper also includes new proposals for modelling variable and uncertain factors describing food processing effects and intraspecies variation in sensitivity.


Subject(s)
Environmental Exposure , Food Contamination , Models, Statistical , Risk Assessment/methods , Algorithms , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...