Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Agric Food Chem ; 64(14): 2941-52, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26996545

ABSTRACT

Exopolysaccharides (EPS) of lactic acid bacteria (LAB) are of interest for food applications. LAB are well-known to produce α-glucan from sucrose by extracellular glucansucrases. Various Lactobacillus reuteri strains also possess 4,6-α-glucanotransferase (4,6-α-GTase) enzymes. Purified 4,6-α-GTases (e.g., GtfB) were shown to act on starches (hydrolysates), cleaving α1→4 linkages and synthesizing α1→6 linkages, yielding isomalto-/maltopolysaccharides (IMMP). Here we report that also L. reuteri cells with these extracellular, cell-associated 4,6-α-GTases synthesize EPS (α-glucan) from starches (hydrolysates). NMR, SEC, and enzymatic hydrolysis of EPS synthesized by L. reuteri 121 cells showed that these have similar linkage specificities but generally are much bigger in size than IMMP produced by the GtfB enzyme. Various IMMP-like EPS are efficiently used as growth substrates by probiotic Bifidobacterium strains that possess amylopullulanase activity. IMMP-like EPS thus have potential prebiotic activity and may contribute to the application of probiotic L. reuteri strains grown on maltodextrins or starches as synbiotics.


Subject(s)
Bacterial Proteins/metabolism , Glycogen Debranching Enzyme System/metabolism , Limosilactobacillus reuteri/enzymology , Polysaccharides/metabolism , Starch/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Biotransformation , Glycogen Debranching Enzyme System/chemistry , Limosilactobacillus reuteri/metabolism , Molecular Structure , Polysaccharides/chemistry , Starch/chemistry
2.
Appl Environ Microbiol ; 81(20): 7223-32, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253678

ABSTRACT

4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application.


Subject(s)
Bacterial Proteins/metabolism , Glucosyltransferases/metabolism , Limosilactobacillus reuteri/enzymology , Starch/biosynthesis
3.
BMC Biotechnol ; 15: 49, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26050651

ABSTRACT

BACKGROUND: The GTFB enzyme of the probiotic bacterium Lactobacillus reuteri 121 is a 4,6-α-glucanotransferase of glycoside hydrolase family 70 (GH70; http://www.cazy.org ). Contrary to the glucansucrases in GH70, GTFB is unable to use sucrose as substrate, but instead converts malto-oligosaccharides and starch into isomalto-/malto- polymers that may find application as prebiotics and dietary fibers. The GTFB enzyme expresses well in Escherichia coli BL21 Star (DE3), but mostly accumulates in inclusion bodies (IBs) which generally contain wrongly folded protein and inactive enzyme. METHODS: Denaturation followed by refolding, as well as ncIB preparation were used for isolation of active GTFB protein from inclusion bodies. Soluble, refolded and ncIB GTFB were compared using activity assays, secondary structure analysis by FT-IR, and product analyses by NMR, HPAEC and SEC. RESULTS: Expression of GTFB in E. coli yielded > 100 mg/l relatively pure and active but mostly insoluble GTFB protein in IBs, regardless of the expression conditions used. Following denaturing, refolding of GTFB protein was most efficient in double distilled H2O. Also, GTFB ncIBs were active, with approx. 10 % of hydrolysis activity compared to the soluble protein. When expressed as units of activity obtained per liter E. coli culture, the total amount of ncIB GTFB expressed possessed around 180 % hydrolysis activity and 100 % transferase activity compared to the amount of soluble GTFB enzyme obtained from one liter culture. The product profiles obtained for the three GTFB enzyme preparations were similar when analyzed by HPAEC and NMR. SEC investigation also showed that these 3 enzyme preparations yielded products with similar size distributions. FT-IR analysis revealed extended ß-sheet formation in ncIB GTFB providing an explanation at the molecular level for reduced GTFB activity in ncIBs. The thermostability of ncIB GTFB was relatively high compared to the soluble and refolded GTFB. CONCLUSION: In view of their relatively high yield, activity and high thermostability, both refolded and ncIB GTFB derived from IBs in E. coli may find industrial application in the synthesis of modified starches.


Subject(s)
Escherichia coli/genetics , Glycogen Debranching Enzyme System/biosynthesis , Glycogen Debranching Enzyme System/chemistry , Inclusion Bodies/enzymology , Limosilactobacillus reuteri/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Enzyme Stability , Escherichia coli/metabolism , Glycogen Debranching Enzyme System/isolation & purification , Inclusion Bodies/chemistry , Limosilactobacillus reuteri/enzymology , Models, Molecular , Protein Denaturation , Protein Refolding , Protein Structure, Secondary , Solubility , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...