Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1237: 80-5, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22458965

ABSTRACT

An on-line HPLC (high performance liquid chromatography) method for the rapid screening of individual antioxidants in mixtures was developed using crocin as a substrate (i.e. oxidation probe) and 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH)) in phosphate buffer (pH 7.5) as a radical generator. The polyene structure of crocin and AAPH-derived peroxyl radicals resemble the lipidic substrates and radicals found in true food more closely than the popular, albeit artificial, DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS(+) (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate)) do. After separation by a C18 (octadecyl silica) column and UV (ultraviolet) detection, antioxidative analytes react with peroxyl radicals at 90°C and the inhibition of crocin oxidation (i.e. bleaching) is detected as a positive peak by an absorbance detector at 440 nm. The method is simple, uses standard instruments and inexpensive reagents. It can be applied for isocratic HPLC runs using mobile phases containing 10-90% organic solvent in water, weak acids or buffers (pH 3.5-8.5). With baseline correction, gradient runs are also feasible. The radical scavenging activity of several natural antioxidants and a green tea extract was studied. After optimisation of conditions such as reagent concentrations and flows, the limit of detection varied from 0.79 to 7.4 ng, depending on the antioxidant.


Subject(s)
Antioxidants/analysis , Carotenoids/chemistry , Chromatography, High Pressure Liquid/methods , Kinetics , Limit of Detection , Spectrophotometry, Ultraviolet
2.
J Chromatogr A ; 1218(47): 8544-50, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-21999916

ABSTRACT

In the past decades, there has been a renewed interest in the use of natural dye plants for textile dyeing, e.g. Reseda luteola (weld). Its main yellow dye constituents are the flavones luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin. The aim of this work was to develop a simple validated industrially usable quantitative method to assess the flavone content of R. luteola samples. The flavones were overnight extracted from the dried and ground aerial parts of the plant at room temperature via maceration with methanol-water 8:2. Afterwards, they were quantified through internal standardisation against chrysin by RP-HPLC-UV at 345 nm. The efficiency of the one-step extraction was 95%. The limits of detection (LOD) and quantitation (LOQ) were ≤ 1 ng and ≤ 3 ng, respectively, providing ample sensitivity for the purpose. The precision expressed as relative standard deviation of the entire method was <6.5% for the combined content of luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin. The average absolute recovery (accuracy) at three spiking levels was 102% (range: 98-107%) and the relative recovery ranged from 99 to 102%. The separation was initially carried out on a traditional 250 mm × 4.6 mm 5 µm HPLC column (80 min run time, 35.9 mL MeOH). It was then speeded up by the use of a 50 mm × 3.0mm 1.8 µm UHPLC column (5 min run time, 1.4 mL MeCN), while still using a conventional HPLC system. Whereas, the retention times on the UHPLC column were relatively less reproducible, cross-validation showed that the quantitation of luteolin-7,3'-O-diglucoside, luteolin-7-O-glucoside and luteolin was not statistically significantly different, with comparable precision. The method using the UHPLC column is more sensitive. The analytical method described meets the demand for a very small manpower input per sample and uses standard laboratory equipment. Usage of short UHPLC columns opens up interesting possibilities for modernising HPLC-based phytochemical analyses.


Subject(s)
Chromatography, High Pressure Liquid/methods , Coloring Agents/analysis , Flavones/analysis , Resedaceae/chemistry , Flavones/isolation & purification , Glucosides/analysis , Glucosides/isolation & purification , Linear Models , Methanol , Plant Extracts/chemistry , Reproducibility of Results , Sensitivity and Specificity , Statistics, Nonparametric , Textile Industry
3.
J Chromatogr A ; 1216(43): 7268-74, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19726044

ABSTRACT

An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high performance liquid chromatography-separated analytes are mixed post-column with a solution of stable free radicals in hexane. Reduced levels of the radical as a result of a reaction with a radical scavenger are detected as negative peaks by an absorbance detector. After investigating a number of different reagents, solvents, concentrations and solution flow rates an optimized instrumental set-up incorporating a superloop for pulse-free delivery of the reagent solution is presented. Both 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy (galvinoxyl) were used as stable free radicals. The method is suitable for both isocratic and gradient HPLC operation. The method has a simple experimental protocol, uses standard instruments and inexpensive and stable reagents, and accepts any hexane-soluble sample. It can also be used for semi-quantitative analysis. The method was applied to several pure, non-polar natural antioxidants, vegetable oils and lipid-soluble rosemary extract. The limits of detection varied from 0.2 to 176 microg/ml, depending on the compound tested.


Subject(s)
Antioxidants/analysis , Chromatography, High Pressure Liquid/methods , Food Analysis/methods , Plant Oils/chemistry , Antioxidants/metabolism , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/metabolism , Biphenyl Compounds/chemistry , Biphenyl Compounds/metabolism , Hexanes/chemistry , Mass Spectrometry , Oils, Volatile/chemistry , Olive Oil , Picrates/chemistry , Picrates/metabolism , Rosmarinus/chemistry , Sensitivity and Specificity , Tocopherols/chemistry
4.
J Chromatogr A ; 1178(1-2): 43-55, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18062980

ABSTRACT

An improved comprehensive two-dimensional (LC x LC) HPLC system for the analysis of triacylglycerols was developed. In the first-dimension, a Ag(I)-coated cation exchanger (250 mm x 2.1 mm, 5 microm) was employed with a gradient from 100% MeOH to 6% MeCN in MeOH at 20 microL/min. Using a 10-way valve with two switching loops, 1 min sections of the first-dimension were introduced in the second-dimension consisting of a 30 mm x 4.6 mm C18 (1.8 microm) column with an isocratic mobile phase of methanol-methyl tert-butyl ether (70:30) at 3.0 mL/min. As the second-dimension solvent was stronger than the first-dimension solvent, focusing in the second-dimension took place, leading to better separations than in previously reported analyses in which hexane was the main constituent of the first-dimension eluent. Compounds differing by 2 in their partition number were baseline separated in the second-dimension. Detection took place by UV at 210 nm, evaporative light scattering and (+)-atmospheric pressure chemical ionisation-MS with the latter giving the best results. Corn oil was investigated and 44 compounds could be detected: 34 triacylglycerols (TAGs), 8 oxygenated TAGs, and 2 TAGs containing a trans double bond. Data manipulation allowed the construction of contour plots and the automated calculation of the first- and second-dimension retention times and peak areas. Quantitative results are compared with a fatty acid methyl ester analysis, and with literature data.


Subject(s)
Chromatography, High Pressure Liquid/methods , Corn Oil/analysis , Mass Spectrometry/methods , Triglycerides/analysis , Corn Oil/isolation & purification , Light , Scattering, Radiation , Triglycerides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...