Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Orthop J Sports Med ; 2(9): 2325967114550781, 2014 Sep.
Article in English | MEDLINE | ID: mdl-26535366

ABSTRACT

BACKGROUND: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. PURPOSE: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after autologous chondrocyte implantation. STUDY DESIGN: Controlled laboratory study and case-control study; Level of evidence, 3. METHODS: Five patients with clinical improvement after autologous chondrocyte implantation and 5 patients with graft failures 3 years after implantation were included. Surplus chondrocytes from the transplantation were frozen for each patient. Each chondrocyte sample was subsequently thawed at the same time point and cultured for 1 cell doubling, prior to RNA purification and global microarray analysis. The expression profiles of a set of predefined marker genes (ie, collagen type II α1 [COL2A1], bone morphogenic protein 2 [BMP2], fibroblast growth factor receptor 3 [FGFR3], aggrecan [ACAN], CD44, and activin receptor-like kinase receptor 1 [ACVRL1]) were also evaluated. RESULTS: No significant difference in expression of the predefined marker set was observed between the success and failure groups. Thirty-nine genes were found to be induced, and 38 genes were found to be repressed between the 2 groups prior to autologous chondrocyte implantation, which have implications for cell-regulating pathways (eg, apoptosis, interleukin signaling, and ß-catenin regulation). CONCLUSION: No expressional differences that predict clinical outcome could be found in the present study, which may have implications for quality control assessments of autologous chondrocyte implantation. The subtle difference in gene expression regulation found between the 2 groups may strengthen the basis for further research, aiming at reliable biomarkers and quality control for tissue engineering in cartilage repair. CLINICAL RELEVANCE: The present study shows the possible limitations of using gene expression before transplantation to predict the chondrogenic and thus clinical potency of the cells. This result is especially important as the chondrogenic potential of the chondrocytes is currently part of quality control measures according to European and American legislations regarding advanced therapies.

2.
Cell Transplant ; 14(7): 469-79, 2005.
Article in English | MEDLINE | ID: mdl-16285255

ABSTRACT

In the field of cell and tissue engineering, culture expansion of human cells in monolayer plays an important part. Traditionally, cell cultures have been supplemented with serum to support attachment and proliferation, but serum is a potential source of foreign protein contamination and viral protein transmission. In this study, we evaluated the use of human serum for experimental human articular chondrocyte expansion and to develop a method for preparation of large volumes of high-quality human serum from healthy blood donors. Human autologous serum contained high levels of epidermal-derived growth factor and platelet-derived growth factor-AB and supported proliferation up to 7 times higher than FCS in primary chondrocyte cultures. By letting the coagulation take place in a commercially available transfusion bag overnight, up to 250 ml of growth factor-rich human serum could be obtained from one donor. The allogenic human serum supported high proliferation rate without losing expression of cartilage-specific genes. The expanded chondrocytes were able to redifferentiate and form cartilage matrix in comparable amounts to autologous serums. In conclusion, the transfusion bags allow preparation of large volumes of growth factor-rich human serum with the capacity to support in vitro cell expansion. The data further indicate that by controlling the coagulation process there are possibilities of optimizing the release of growth factors for other emerging cell therapies.


Subject(s)
Cell Culture Techniques/methods , Chondrocytes/cytology , Chondrocytes/drug effects , Serum/physiology , Animals , Cartilage, Articular/cytology , Cattle , Cell Proliferation , Culture Media, Serum-Free , Fetus , Growth Substances/analysis , Growth Substances/genetics , Growth Substances/metabolism , Humans , Serum/chemistry , Tissue Engineering/methods
3.
Osteoarthritis Cartilage ; 12(7): 525-35, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219567

ABSTRACT

OBJECTIVE: The aim of the present study was to investigate gene expression during the in vitro redifferentiation process of human articular chondrocytes isolated from clinical samples from patient undergoing an autologous chondrocyte transplantation therapy (ACT). METHOD: Monolayer (ML) expanded human articular chondrocytes from four donors were cultured in a 3D pellet model and the redifferentiation was investigated by biochemistry, histology, immunohistochemistry and microarray analysis. RESULTS: The culture expanded chondrocytes redifferentiated in the pellet model as seen by an increase in collagen type II immunoreactivity between day 7 and 14. The gene expression from ML to pellet at day 7 included an increase in cartilage matrix proteins like collagen type XI, tenascin C, dermatopontin, COMP and fibronectin. The late phase consisted of a strong downregulation of extracellular signal-regulated protein kinase (ERK-1) and an upregulation of p38 kinase and SOX-9, suggesting that the late phase mimicked parts of the signaling processes involved in the early chondrogenesis in limb bud cells. Other genes, which indicated a transition from proliferation to tissue formation, were the downregulated cell cycle genes GSPT1 and the upregulated growth-arrest-specific protein (gas). The maturation of the pellets included no signs of hypertrophy or apoptosis as seen by downregulation of collagen type X, Matrix Gla protein and increased expression of caspase 3. CONCLUSION: Our data show that human articular chondrocytes taken from surplus cells of patient undergoing ACT treatment and expanded in ML, redifferentiate and form cartilage like matrix in vitro and that this dynamic process involves genes known to be expressed in early chondrogenesis.


Subject(s)
Cartilage, Articular/physiopathology , Chondrocytes/physiology , Gene Expression/physiology , Adult , Cartilage, Articular/pathology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Chondrocytes/pathology , Chondrocytes/transplantation , Collagen/analysis , Gene Expression/genetics , Humans , Immunohistochemistry/methods , Oligonucleotide Array Sequence Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...