Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(12): 2744-2762, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33759299

ABSTRACT

Biological sources of carbon sequestration such as revegetation have been highlighted as important avenues to combat climate change and meet global targets by the global community including the Paris Climate Agreement. However, current and projected carbon prices present a considerable barrier to broad-scale adoption of tree planting as a key mitigation strategy. One avenue to provide additional economic and environmental incentives to encourage wider adoption of revegetation is the bundling or stacking of additional co-beneficial ecosystem services that can be realized from tree planting. Using the World's largest land-based carbon credit trading scheme, the Australian Emissions Reduction Scheme (ERF), we examine the potential for three pairs of ecosystem services, where the carbon sequestration value of land use change is paired with an additional co-benefit with strong prospects for local tangible benefits to land owners/providers. Two cases consider agricultural provisioning values that can be realized by the landowners in higher returns: increased pollination services and reduced lamb mortality. The third case examined payments for tree plantings along riparian buffers, with payments to farmers by a water utility who realizes the benefit from reduced treatment cost due to water quality improvements. Economic incentives from these co-benefit case studies were found to be mixed, with avoided treatment costs from water quality paired with carbon payments the most promising, while pollination and reduced lamb mortality paired with carbon payments were unable to bridge the economic gap except under the most optimistic assumptions. We conclude that the economics case for significant land use change are likely to be geographically dispersed and only viable in relatively niche landscape positions in high establishment, high opportunity cost areas even when carbon payments are augmented with the value of co-benefits classified as providing direct and local benefits.


Subject(s)
Carbon , Ecosystem , Animals , Australia , Carbon/analysis , Carbon Sequestration , Conservation of Natural Resources , Sheep
2.
Water Res ; 138: 282-292, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29614456

ABSTRACT

Treating drinking water appropriately depends, in part, on the robustness of source water quality risk assessments, however quantifying the proportion of infectious, human pathogenic Cryptosporidium oocysts remains a significant challenge. We analysed 962 source water samples across nine locations to profile the occurrence, rate and timing of infectious, human pathogenic Cryptosporidium in surface waters entering drinking water reservoirs during rainfall-runoff conditions. At the catchment level, average infectivity over the four-year study period reached 18%; however, most locations averaged <5%. The maximum recorded infectivity fraction within a single rainfall runoff event was 65.4%, and was dominated by C. parvum. Twenty-two Cryptosporidium species and genotypes were identified using PCR-based molecular techniques; the most common being C. parvum, detected in 23% of water samples. Associations between landuse and livestock stocking characteristics with Cryptosporidium were determined using a linear mixed-effects model. The concentration of pathogens in water were significantly influenced by flow and dominance of land-use by commercial grazing properties (as opposed to lifestyle properties) in the catchment (p < 0.01). Inclusion of measured infectivity and human pathogenicity data into a quantitative microbial risk assessment (QMRA) could reduce the source water treatment requirements by up to 2.67 log removal values, depending on the catchment, and demonstrated the potential benefit of collating such data for QMRAs.


Subject(s)
Cryptosporidium , Water Pollutants/analysis , Water Supply , Cryptosporidiosis , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/pathogenicity , Drinking Water , Environmental Monitoring , Genotype , Humans , Oocysts , Risk Assessment , Water Purification , Water Quality
4.
Ecol Evol ; 3(5): 1163-72, 2013 May.
Article in English | MEDLINE | ID: mdl-23762504

ABSTRACT

Functional plant traits are likely to adapt under the sustained pressure imposed by environmental changes through natural selection. Employing Brassica napus as a model, a multi-generational study was performed to investigate the potential trajectories of selection at elevated [CO2] in two different temperature regimes. To reveal phenotypic divergence at the manipulated [CO2] and temperature conditions, a full-factorial natural selection regime was established in a phytotron environment over the range of four generations. It is demonstrated that a directional response to selection at elevated [CO2] led to higher quantities of reproductive output over the range of investigated generations independent of the applied temperature regime. The increase in seed yield caused an increase in aboveground biomass. This suggests quantitative changes in the functions of carbon sequestration of plants subjected to increased levels of CO2 over the generational range investigated. The results of this study suggest that phenotypic divergence of plants selected under elevated atmospheric CO2 concentration may drive the future functions of plant productivity to be different from projections that do not incorporate selection responses of plants. This study accentuates the importance of phenotypic responses across multiple generations in relation to our understanding of biogeochemical dynamics of future ecosystems. Furthermore, the positive selection response of reproductive output under increased [CO2] may ameliorate depressions in plant reproductive fitness caused by higher temperatures in situations where both factors co-occur.

5.
J Plant Physiol ; 168(13): 1550-61, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21511363

ABSTRACT

Increased temperature, atmospheric CO(2) and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO(2) (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/C(i) curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PI(total), which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test. The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO(2) and prolonged drought generally down-regulated J(max), V(cmax) and PI(total). Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season J(max), V(cmax) and PI(total). The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T×CO2, D×CO2 and T×D×CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PI(total) are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of V(cmax), J(max) and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions. This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.


Subject(s)
Calluna/physiology , Carbon Dioxide/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Poaceae/physiology , Water/metabolism , Calluna/metabolism , Chlorophyll/metabolism , Climate Change , Denmark , Droughts , Ecosystem , Electron Transport/physiology , Light , Models, Biological , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Shoots/physiology , Plant Stomata/physiology , Plant Transpiration , Poaceae/metabolism , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...