Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 07 14.
Article in English | MEDLINE | ID: mdl-34259624

ABSTRACT

Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-ß-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , DNA Transposable Elements , Genes, Bacterial/genetics , Germany , Humans , Macrolides/pharmacology , Phylogeny , Pneumococcal Vaccines , Serogroup , Serotyping , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...