Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Zool ; 67(1): 101-111, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33654494

ABSTRACT

A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. However, the process for selecting which information to include is not always straightforward. Using data on 2 agonistic behaviors in a captive population of monk parakeets (Myiopsitta monachus), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between 2 individuals) affects individual- and group-level social properties. We designed 2 reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the 2 behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the 2 behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.

2.
Oecologia ; 195(2): 327-339, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33481090

ABSTRACT

Invasive species-species that have successfully overcome the barriers of transport, introduction, establishment, and spread-are a risk to biodiversity and ecosystem function. Introduction effort is one of the main factors underlying invasion success, but life history traits are also important as they influence population growth. In this contribution, we first investigated life history traits of the Barbary ground squirrel, Atlantoxerus getulus, a species with a very low introduction effort. We then studied if their invasion success was due to a very fast life history profile by comparing their life history traits to those of other successful invasive mammals. Next, we examined whether the number of founders and/or a fast life history influences the invasion success of squirrels. Barbary ground squirrels were on the fast end of the "fast-slow continuum", but their life history was not the only contributing factor to their invasion success, as the life history profile is comparable to other invasive species that do not have such a low introduction effort. We also found that neither life history traits nor the number of founders explained the invasion success of introduced squirrels in general. These results contradict the concept that introduction effort is the main factor explaining invasion success, especially in squirrels. Instead, we argue that invasion success can be influenced by multiple aspects of the new habitat or the biology of the introduced species.


Subject(s)
Life History Traits , Animals , Ecosystem , Introduced Species , Mammals , Sciuridae
3.
Proc Biol Sci ; 281(1783): 20133135, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24671971

ABSTRACT

The evolutionary function and maintenance of variation in animal personality is still under debate. Variation in the size of metabolic organs has recently been suggested to cause and maintain variation in personality. Here, we examine two main underlying notions: (i) that organ sizes vary consistently between individuals and cause consistent behavioural patterns, and (ii) that a more exploratory personality is associated with reduced survival. Exploratory behaviour of captive red knots (Calidris canutus, a migrant shorebird) was negatively rather than positively correlated with digestive organ (gizzard) mass, as well as with body mass. In an experiment, we reciprocally reduced and increased individual gizzard masses and found that exploration scores were unaffected. Whether or not these birds were resighted locally over the 19 months after release was negatively correlated with their exploration scores. Moreover, a long-term mark-recapture effort on free-living red knots with known gizzard masses at capture confirmed that local resighting probability (an inverse measure of exploratory behaviour) was correlated with gizzard mass without detrimental effects on survival. We conclude that personality drives physiological adjustments, rather than the other way around, and suggest that physiological adjustments mitigate the survival costs of exploratory behaviour. Our results show that we need to reconsider hypotheses explaining personality variation based on organ sizes and differential survival.


Subject(s)
Charadriiformes/anatomy & histology , Charadriiformes/physiology , Exploratory Behavior , Gizzard, Avian/anatomy & histology , Longevity , Animal Migration , Animals , Female , Male , Netherlands , Organ Size , Personality
SELECTION OF CITATIONS
SEARCH DETAIL
...