Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
mSystems ; 6(1)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563780

ABSTRACT

Compound biodegradability tests with natural microbial communities form an important keystone in the ecological assessment of chemicals. However, biodegradability tests are frequently limited by a singular focus either on the chemical and potential transformation products or on the individual microbial species degrading the compound. Here, we investigated a methodology to simultaneously analyze community compositional changes and biomass growth on dosed test compound from flow cytometry (FCM) data coupled to machine-learned cell type recognition. We quantified the growth of freshwater microbial communities on a range of carbon dosages of three readily biodegradable reference compounds, phenol, 1-octanol, and benzoate, in comparison to three fragrances, methyl jasmonate, myrcene, and musk xylene (as a nonbiodegradable control). Compound mass balances with between 0.1 to 10 mg C · liter-1 phenol or 1-octanol, inferred from cell numbers, parent compound analysis, and CO2 evolution, as well as use of 14C-labeled compounds, showed between 6 and 25% mg C · mg C-1 substrate incorporation into biomass within 2 to 4 days and 25 to 45% released as CO2 In contrast, similar dosage of methyl jasmonate and myrcene supported slower (4 to 10 days) and less (2.6 to 6.6% mg C · mg C-1 with 4.9 to 22% CO2) community growth. Community compositions inferred from machine-learned cell type recognition and 16S rRNA amplicon sequencing showed substrate- and concentration-dependent changes, with visible enrichment of microbial subgroups already at 0.1 mg C · liter-1 phenol and 1-octanol. In general, community compositions were similar at the start and after the stationary phase of the microbial growth, except at the highest used substrate concentrations of 100 to 1,000 mg C · liter-1 Flow cytometry cell counting coupled to deconvolution of communities into subgroups is thus suitable to infer biodegradability of organic chemicals, permitting biomass balances and near-real-time assessment of relevant subgroup changes.IMPORTANCE The manifold effects of potentially toxic compounds on microbial communities are often difficult to discern. Some compounds may be transformed or completely degraded by few or multiple strains in the community, whereas others may present inhibitory effects. In this study, we benchmark a new method based on machine-learned microbial cell recognition to rapidly follow dynamic changes in aquatic communities. We further determine productive biodegradation upon dosing of a number of well-known readily biodegradable tester compounds at a variety of concentrations. Microbial community growth was quantified using flow cytometry, and the multiple cell parameters measured were used in parallel to deconvolute the community on the basis of similarity to previously standardized cell types. Biodegradation was further confirmed by chemical analysis, showing how distinct changes in specific populations correlate to degradation. The method holds great promise for near-real-time community composition changes and deduction of compound biodegradation in natural microbial communities.

2.
Front Microbiol ; 4: 203, 2013.
Article in English | MEDLINE | ID: mdl-23882265

ABSTRACT

Pseudomonas azelaica HBP1 is one of the few bacteria known to completely mineralize the biocide and toxic compound 2-hydroxybiphenyl (2-HBP), but the mechanisms of its tolerance to the toxicity are unknown. By transposon mutant analysis and screening for absence of growth on water saturating concentrations of 2-HBP (2.7 mM) we preferentially found insertions in three genes with high homology to the mexA, mexB, and oprM efflux system. Mutants could grow at 2-HBP concentrations below 100 µM but at lower growth rates than the wild-type. Exposure of the wild-type to increasing 2-HBP concentrations resulted in acute cell growth arrest and loss of membrane potential, to which the cells adapt after a few hours. By using ethidium bromide (EB) as proxy we could show that the mutants are unable to expel EB effectively. Inclusion of a 2-HBP reporter plasmid revealed that the wild-type combines efflux with metabolism at all 2-HBP concentrations, whereas the mutants cannot remove the compound and arrest metabolism at concentrations above 24 µM. The analysis thus showed the importance of the MexAB-OprM system for productive metabolism of 2-HBP.

3.
J Bacteriol ; 185(15): 4530-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12867462

ABSTRACT

An unusual type of gene expression from an integrase promoter was found in cultures of the bacterium Pseudomonas sp. strain B13. The promoter controls expression of the intB13 integrase gene, which is present near the right end of a 105-kb conjugative genomic island (the clc element) encoding catabolism of aromatic compounds. The enzymatic activity of integrase IntB13 is essential for site-specific integration of the clc element into the bacterial host's chromosome. By creating transcription fusions between the intB13 promoter and the gfp gene, we showed that integrase expression in strain B13 was inducible under stationary-phase conditions but, strangely, occurred in only a small proportion of individual bacterial cells rather than equally in the whole population. Integrase expression was significantly stimulated by growing cultures on 3-chlorobenzoate. High cell density, heat shock, osmotic shock, UV irradiation, and treatment with alcohol did not result in measurable integrase expression. The occurrence of the excised form of the clc element and an increase in the rates of clc element transfer in conjugation experiments correlated with the observed induction of the intB13'-gfp fusion in stationary phase and in the presence of 3-chlorobenzoate. This suggested that activation of the intB13 promoter is the first step in stimulation of clc transfer. To our knowledge, this is the first report of a chlorinated compound's stimulating horizontal transfer of the genes encoding its very metabolism.


Subject(s)
Chromosomes, Bacterial/genetics , Conjugation, Genetic , DNA Transposable Elements , Integrases/metabolism , Pseudomonas/enzymology , Chlorobenzoates/pharmacology , Collodion , Culture Media , DNA, Circular/analysis , Filtration , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal/drug effects , Green Fluorescent Proteins , Integrases/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Promoter Regions, Genetic , Pseudomonas/genetics , Pseudomonas/growth & development , Recombinant Fusion Proteins/metabolism
4.
Mol Microbiol ; 49(1): 93-104, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12823813

ABSTRACT

The clc genomic island is a 105 kb integrative and conjugative element (ICE) in Pseudomonas sp. strain B13, which encodes metabolism of 3-chlorocatechol. The clc island is integrated in a tRNAGly gene, but can excise and form a circular intermediate in which both ends are connected. The integrase gene (intB13) of the clc genomic island is located at the right end, 202 bp from the junction site facing inwards. Fragments upstream of intB13 in the circular form and in the integrated form were fused to a promoterless gfp gene for Green Fluorescent Protein and introduced in monocopy onto the chromosome of strain B13. Quantitative GFP fluorescence measurements in individual cells of the different B13-derivatives revealed that the circular form fragment contained a strong constitutive promoter (Pcirc) driving intB13 expression in all cells. By using primer extension Pcirc could be mapped near the left end of the clc element and Pcirc can therefore only control intB13 expression when left and right ends are connected as in the circular form. Expression from intB13 upstream fragments from the integrated clc element was weaker than that from Pcirc and only occurred in maximally 15% of individual cells in a culture. A promoter (Pint) could be roughly mapped in this region by using reverse-transcription PCR and by successively shortening the fragment from the 5' end. Transposon mutants in cloned left end sequences of the clc element were selected which had lost the activation potential on the Pint promoter and those which resulted in overexpression of GFP from Pint. The DNA sequence of the region of the transposon insertions pointed to a relatively well conserved area among various other genomic islands. The activator mutants mapped in an open reading frame (ORF) encoding a 175 amino acid protein without any significant similarity to functionally characterized proteins in the databases.


Subject(s)
Genomic Islands , Integrases/genetics , Integrases/metabolism , Promoter Regions, Genetic , Pseudomonas/genetics , Base Sequence , Binding Sites , Catechols/metabolism , Chromosome Mapping , Cloning, Molecular , DNA, Circular , Gene Expression Regulation, Bacterial , Genes, Reporter , Molecular Sequence Data , Open Reading Frames , Pseudomonas/physiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Microb Ecol ; 45(4): 419-32, 2003 May.
Article in English | MEDLINE | ID: mdl-12704553

ABSTRACT

High nitrogen losses were observed in a rotating biological contactor (RBC) treating ammonium-rich (up to 500 mg NH4(+)-N/L) but organic-carbon-poor leachate from a hazardous waste landfill in Kölliken, Switzerland. The composition and spatial structure of the microbial community in the biofilm on the RBC was analyzed with specific attention for the presence of aerobic ammonium and nitrite oxidizing bacteria and anaerobic ammonium oxidizers. Anaerobic ammonium oxidation (anammox) involves the oxidation of ammonium with nitrite to N2. First the diversity of the biofilm community was determined from sequencing cloned PCR-amplified 16S rDNA fragments. This revealed the presence of a number of very unusual 16S rDNA sequences, but very few sequences related to known ammonium or nitrite oxidizing bacteria. From analysis of biofilm samples by fluorescence in situ hybridization with known phylogenetic probes and by dot-blot hybridization of the same probes to total RNA purified from biofilm samples, the main groups of microorganisms constituting the biofilm were found to be ammonium-oxidizing bacteria from the Nitrosomonas europaea/eutropha group, anaerobic ammonium-oxidizing bacteria of the "Candidatus Kuenenia stuttgartiensis" type, filamentous bacteria from the phylum Bacteroidetes, and nitrite-oxidizing bacteria from the genus Nitrospira. Aerobic and anaerobic ammonium-oxidizing bacteria were present in similar amounts of around 20 to 30% of the biomass, whereas members of the CFB phylum were present at around 7%. Nitrite oxidizing bacteria were only present in relatively low amounts (less than 5% determined with fluorescence in situ hybridization). Data from 16S rRNA dot-blot and in situ hybridization were not in all cases congruent. FISH analysis of thin-sliced and fixed biofilm samples clearly showed that the aerobic nitrifiers were located at the top of the biofilm in an extremely high density and in alternating clusters. Anammox bacteria were exclusively present in the lower half of the biofilm, whereas CFB-type filamentous bacteria were present throughout the biofilm. The structure and composition of these biofilms correlated very nicely with the proposed physiological functional separations in ammonium conversion.


Subject(s)
Bacteria, Aerobic/physiology , Biofilms , Nitrogen/metabolism , Quaternary Ammonium Compounds/metabolism , Waste Disposal, Fluid , Bacteria, Aerobic/genetics , DNA, Bacterial , Environmental Monitoring , In Situ Hybridization, Fluorescence , Oxidation-Reduction , Population Dynamics , RNA, Ribosomal, 16S/analysis
6.
Environ Microbiol ; 3(8): 512-24, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11578312

ABSTRACT

Diffusion of octane from oily droplets in different microscale settings was measured using Escherichia coli expressing the stable green fluorescent protein (GFP) from the alkB promoter of Pseudomonas oleovorans. GFP fluorescence intensities were determined quantitatively at the single-cell level after 1.0 or 2.5 h incubation and compared with different calibration series using known concentrations of octane. By immobilizing the E. coli sensor cells on the bottom glass plate of a microscope flow chamber, it was possible to monitor the diffusion process for octane in aqueous solution as a function of time and distance from non-aqueous phase droplets of octane alone or oily octane mixtures. When a gas phase was included in the flow chambers, octane transport could be demonstrated from the oily mixtures to the cells through both gas and liquid phase. Assays of non-immobilized sensor cells in microdroplets in the presence or absence of soil particles incubated with octane through the vapour phase revealed a slight reduction in the total amount of induced E. coli cells in the presence of soil. Our results indicate the power of using GFP-marked single-cell biosensors in determining microscale bioavailability of organic pollutants.


Subject(s)
Escherichia coli/metabolism , Octanes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Biodegradation, Environmental , Biosensing Techniques , Cytochrome P-450 CYP4A , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Diffusion , Escherichia coli/genetics , Gases/metabolism , Genetic Engineering , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Octanes/pharmacology , Promoter Regions, Genetic , Pseudomonas/genetics , Soil Microbiology , Soil Pollutants/analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
7.
Appl Environ Microbiol ; 67(8): 3333-9, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11472901

ABSTRACT

The biotransformation of four different classes of aromatic compounds by the Escherichia coli strain DH5alpha(pTCB 144), which contained the chlorobenzene dioxygenase (CDO) from Pseudomonas sp. strain P51, was examined. CDO oxidized biphenyl as well as monochlorobiphenyls to the corresponding cis-2,3-dihydro-2,3-dihydroxy derivatives, whereby oxidation occurred on the unsubstituted ring. No higher substituted biphenyls were oxidized. The absolute configurations of several monosubstituted cis-benzene dihydrodiols formed by CDO were determined. All had an S configuration at the carbon atom in meta position to the substituent on the benzene nucleus. With one exception, the enantiomeric excess of several 1,4-disubstituted cis-benzene dihydrodiols formed by CDO was higher than that of the products formed by two toluene dioxygenases. Naphthalene was oxidized to enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. All absolute configurations were identical to those of the products formed by toluene dioxygenases of Pseudomonas putida UV4 and P. putida F39/D. The formation rate of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene was significantly higher (about 45 to 200%) than those of several monosubstituted cis-benzene dihydrodiols and more than four times higher than the formation rate of cis-benzene dihydrodiol. A new gas chromatographic method was developed to determine the enantiomeric excess of the oxidation products.


Subject(s)
Dioxygenases , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrocarbons, Aromatic/metabolism , Oxygenases/metabolism , Pseudomonas/enzymology , Benzene/metabolism , Biotransformation , Biphenyl Compounds/metabolism , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Oxygenases/genetics , Pseudomonas/genetics , Toluene/metabolism
8.
Arch Microbiol ; 175(3): 198-207, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11357512

ABSTRACT

Anaerobic ammonium oxidation with nitrite to N2 (anammox) is a recently discovered microbial reaction with interesting potential for nitrogen removal from wastewater. We enriched an anammox culture from a rotating disk contactor (near Kölliken, Switzerland) that was used to treat ammonium-rich leachate with low organic carbon content. This enrichment led to a relative population size of 88% anammox bacteria. The microorganism carrying out the anammox reaction was identified by analysis of the 16S rDNA sequence and by fluorescence in situ hybridization (FISH) with 16S-rRNA-targeting probes. The percentage sequence identity between the 16S rDNA sequences of the Kölliken anammox organism and the archetype anammox strain Candidatus Brocadia anammoxidans was 90.9%, but between 98.5 and 98.9% with Candidatus Kuenenia stuttgartiensis, an organism identified in biofilms by molecular methods. The Kölliken culture catalyzed the anaerobic oxidation of ammonium with nitrite in a manner seemingly identical to that of Candidatus B. anammoxidans, but exhibited higher tolerance to phosphate (up to 20 mM) and to nitrite (up to 13 mM) and was active at lower cell densities. Anammox activity was observed only between pH 6.5 and 9, with an optimum at pH 8 and a temperature optimum at 37 degrees C. Hydroxylamine and hydrazine, which are intermediates of the anammox reaction of Candidatus B. anammoxidans, were utilized by the Kölliken organisms, and approximately 15% of the nitrite utilized during autotrophic growth was converted to nitrate. Electron microscopy showed a protein-rich region in the center of the cells surrounded by a doughnut-shaped region containing ribosomes and DNA. This doughnut-shape region was observed with FISH as having a higher fluorescence intensity. Similar to Candidatus B. anammoxidans, the Kölliken anammox organism typically formed homogenous clusters containing up to several hundred cells within an extracellular matrix.


Subject(s)
Bacteria/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Quaternary Ammonium Compounds/metabolism , Biofilms , Hydrogen-Ion Concentration , Oxidation-Reduction , Temperature
9.
Arch Microbiol ; 175(2): 79-85, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11285744

ABSTRACT

Genes for metabolic pathways in bacteria that degrade aromatic or aliphatic pollutants have mostly been confined to either plasmid DNAs or to the chromosome. For a few pathways, including classical pathways for chlorocatechol and biphenyl degradation, recent evidence has been obtained for location of the pathway genes on mobile DNA elements which employ phage-like integrases. This enables the DNA elements to integrate into specific sites on the chromosome and yet to excise and transfer to other host bacteria. This mini-review gives an overview of those elements and their relationship to an increasing number of phage-like elements associated with bacterial virulence.


Subject(s)
Biphenyl Compounds/metabolism , Catechols/metabolism , DNA Transposable Elements , Integrases/metabolism , Plasmids , Pseudomonas Phages/genetics , Pseudomonas/genetics , Biodegradation, Environmental , Integrases/chemistry , Pseudomonas/metabolism , Pseudomonas Phages/enzymology , Recombination, Genetic
10.
J Bacteriol ; 182(15): 4165-72, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10894723

ABSTRACT

Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdD(II)C(II)E(II)F(II) and tfdB(II) (in short, the tfd(II) cluster), by analogy to tfdCDEF and tfdB (the tfd(I) cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdD(II), suggesting an operon-like organization for the tfd(II) genes. By expressing each ORF in Escherichia coli, we confirmed that tfdD(II) coded for a chloromuconate cycloisomerase, tfdC(II) coded for a chlorocatechol 1, 2-dioxygenase, tfdE(II) coded for a dienelactone hydrolase, tfdF(II) coded for a maleylacetate reductase, and tfdB(II) coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfd(I) and tfd(II) genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfd(II) genes seem to be redundant with respect to those of the tfd(I) cluster. One reason why the tfd(II) genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS.


Subject(s)
Adipates/metabolism , Catechols/metabolism , Chlorophenols/metabolism , Cupriavidus necator/genetics , Multigene Family , Base Sequence , Cupriavidus necator/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Models, Chemical , Molecular Sequence Data , Nucleic Acid Hybridization , Open Reading Frames , Plasmids/metabolism , RNA, Bacterial/metabolism
11.
Appl Environ Microbiol ; 66(7): 2842-52, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10877777

ABSTRACT

Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024-5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids.


Subject(s)
Plasmids/genetics , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology , Toluene/metabolism , Xylenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Genes, Bacterial , Molecular Sequence Data , Operon/genetics , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Pseudomonas/metabolism , Republic of Belarus , Restriction Mapping , Sequence Analysis, DNA , Soil Pollutants/metabolism
12.
J Bacteriol ; 182(2): 405-17, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10629187

ABSTRACT

The regulation of 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl degradation in Pseudomonas azelaica is mediated by the regulatory gene, hbpR. The hbpR gene encodes a 63-kDa protein belonging to the NtrC family of prokaryotic transcriptional activators and having the highest homology to members of the XylR/DmpR subclass. Disruption of the hbpR gene in P. azelaica and complementation in trans showed that the HbpR protein was the key regulator for 2-hydroxybiphenyl metabolism. Induction experiments with P. azelaica and Escherichia coli containing luxAB-based transcriptional fusions revealed that HbpR activates transcription from a promoter (P(hbpC)) in front of the first gene for 2-hydroxybiphenyl degradation, hbpC, and that 2-hydroxybiphenyl itself is the direct effector for HbpR-mediated activation. Of several compounds tested, only the pathway substrates 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl and structural analogs like 2-aminobiphenyl and 2-hydroxybiphenylmethane were effectors for HbpR activation. HbpR is therefore, to our knowledge, the first regulator of the XylR/DmpR class that recognizes biaromatic but not monoaromatic structures. Analysis of a spontaneously occurring mutant, P. azelaica HBP1 Prp, which can grow with the non-wild-type effector 2-propylphenol, revealed a single mutation in the hbpR gene (T613C) leading to a Trp-->Arg substitution at amino acid residue 205. P. azelaica HBP1 derivative strains without a functional hbpR gene constitutively expressed the genes for 2-hydroxybiphenyl degradation when complemented in trans with the hbpR-T613C gene. This suggests the importance of this residue, which is conserved among all members of the XylR/DmpR subclass, for interdomain repression.


Subject(s)
Bacterial Proteins/genetics , Biphenyl Compounds/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Pseudomonas/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Amino Acid Sequence , Escherichia coli Proteins , Molecular Sequence Data , Mutation , PII Nitrogen Regulatory Proteins , Phenols/metabolism , Sequence Alignment , Sequence Analysis, DNA
13.
Appl Environ Microbiol ; 65(12): 5242-6, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10583971

ABSTRACT

cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5alpha(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3, 4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1, 2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.


Subject(s)
Oxidoreductases/metabolism , Pseudomonas/enzymology , Biotransformation , Chromatography, High Pressure Liquid , Cloning, Molecular , Escherichia coli , Gas Chromatography-Mass Spectrometry , Kinetics , Oxidoreductases/genetics , Recombinant Proteins/metabolism , Stereoisomerism , Substrate Specificity
14.
Syst Appl Microbiol ; 22(3): 454-65, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10553298

ABSTRACT

Activated sludge communities which performed enhanced biological phosphate removal (EBPR) were phylogenetically analyzed by 16S rRNA-targeted molecular methods. Two anaerobic-aerobic sequencing batch reactors were operated with two different carbon sources (acetate vs. a complex mixture) for three years and showed anaerobic-aerobic cycles of polyhydroxybutyrate- (PHB) and phosphate-accumulation characteristic for EBPR-systems. In situ hybridization showed that the reactor fed with the acetate medium was dominated by bacteria phylogenetically related to the Rhodocyclus-group within the beta-Proteobacteria (81% of DAPI-stained cells). The reactor with the complex medium was also predominated by this phylogenetic group albeit at a lesser extent (23% of DAPI-stained cells). More detailed taxonomic information on the dominant bacteria in the acetate-reactor was obtained by constructing clone libraries of 16S rDNA fragments. Two different types of Rhodocyclus-like clones (R1 and R6) were retrieved. Type-specific in situ hybridization and direct rRNA-sequencing revealed that R6 was the type of the dominant bacteria. Staining of intracellular polyphosphate- and PHB-granules confirmed that the R6-type bacterium accumulates PHB and polyphosphate just as predicted by the metabolic models for EBPR. High similarities to 16S rDNA fragments from other EBPR-sludges suggest that R6-type organisms were present and may play an important role in EBPR in general. Although the R6-type bacterium is closely related to the genus Rhodocyclus, it did not grow phototrophically. Therefore, we propose a provisional new genus and species Candidatus Accumulibacter phosphatis.


Subject(s)
Bacteria/isolation & purification , Phosphates/metabolism , Sewage/microbiology , Aerobiosis , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Base Sequence , Biodegradation, Environmental , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Hydroxybutyrates/metabolism , In Situ Hybridization , Indoles , Microscopy, Fluorescence , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Staining and Labeling
15.
Biodegradation ; 10(2): 113-25, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10466200

ABSTRACT

The capacity of the beta-Proteobacterium Pseudomonas sp. strain P51, which degrades chlorinated benzenes, to metabolize 1,2,4-trichlorobenzene (TCB) under environmental conditions was tested by its release into two experimental systems. The first system consisted of laboratory scale microcosms which were operated with and without the addition of TCB and which were inoculated with sludge from a wastewater treatment plant. The second system consisted of a non sterile, water saturated soil column. We determined survival of strain P51 after its introduction and its ability to degrade TCB. The population dynamics was followed by selective plating and applying the polymerase chain reaction (PCR) to detect strain P51 and the chlorobenzene (tcb) genes on catabolic plasmid pP51. The results showed a completely different behaviour of strain P51 in the two habitats under the applied conditions. In the soil column the P51 bacteria inoculated the entire area and their population reached 2 x 10(6) cells/g soil. The population remained active since TCB was degraded to concentrations below the detection limit of 30 micrograms/l. In the sludge microcosms, the number of strain P51 cells immediately decreased from 4 x 10(7) cells/ml to 10(5) cells/ml over a period of 2 days after inoculation, and then the strain disappeared to levels below our detection limit (10(3)-10(4) cells/ml). In the reactor without TCB the population of P51 maintained a stable value of 10(5) cells/ml during 8 days but then also decreased to levels below the detection limit. In addition, no significant TCB degradation was found in the sludge reactors. The influence of presence of TCB on maintenance of strain P51 in the two habitats is discussed. This work demonstrates the possibility to successfully apply preselected strains to degrade otherwise poorly degradable substances in complex mixed microbial communities. However, survival and activity may depend strongly on the type of system into which the strain is introduced.


Subject(s)
Chlorobenzenes/metabolism , Environmental Pollutants/metabolism , Pseudomonas/metabolism , Base Sequence , Biodegradation, Environmental , Bioreactors , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Ecosystem , Genes, Bacterial , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Pseudomonas/genetics , Pseudomonas/growth & development , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Homology, Nucleic Acid , Sewage/microbiology , Soil Microbiology
16.
Mol Microbiol ; 33(2): 396-406, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10411755

ABSTRACT

Ralstonia eutropha JMP134 carries a 22 kb DNA region on plasmid pJP4 necessary for the degradation of 2,4-D (2,4-dichlorophenoxyacetate). In this study, expression of the 2,4-D pathway genes (designated tfd ) upon exposure to different concentrations of 2,4-D was measured at a detailed timescale in chemostat-grown R. eutropha cultures. A sharp increase in mRNA levels for tfdA, tfdCDEF-B, tfdDIICIIEIIFII-BII and tfdK was detected between 2 and 13 min after exposure to 2,4-D. This response time was not dependent on the 2,4-D concentration. The genes tfdA, tfdCD and tfdDIICII were expressed immediately upon induction, whereas tfdB, tfdBII and tfdK mRNAs could be detected only around 10 min later. The number of tfd mRNA transcripts per cell was estimated to be around 200-500 during maximal expression, after which they decreased to between 1 and 30 depending on the 2,4-D concentration used for induction. Unlike the mRNAs, the specific activity of the 2,4-D pathway enzyme chlorocatechol 1,2-dioxygenase did not increase sharply but accumulated to a steady-state plateau, which was dependent on the 2, 4-D concentration in the medium. At 1 mM 2,4-D, several oscillations in mRNA levels were observed before steady-state expression was reached, which was caused by transient accumulation of the first pathway intermediate, 2,4-dichlorophenol, to toxic concentrations. Expression of tfdR and tfdS, the (identical) regulatory genes for the tfd pathway remained low and essentially unchanged during the entire adaptation phase.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Adaptation, Physiological , Cupriavidus necator/genetics , Gene Expression Regulation, Bacterial , Herbicides/pharmacology , Multigene Family , Transcription Factors , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Nucleic Acid Hybridization , RNA, Bacterial/metabolism , RNA, Messenger/metabolism
17.
FEMS Microbiol Lett ; 167(2): 123-9, 1998 Oct 15.
Article in English | MEDLINE | ID: mdl-9809414

ABSTRACT

Competitive reverse transcriptase polymerase chain reaction (RT/PCR) was used to quantify the mRNA of the tcbC gene of Pseudomonas sp. strain P51. The tcbC gene encodes the enzyme chlorocatechol-1,2-dioxygenase involved in 1,2,4-trichlorobenzene (TCB) degradation. The mRNA content per cell was monitored in a batch culture growing on 1,2,4-TCB. No mRNA could be detected in the first 2 days of the lag phase. mRNA production became maximal with 20 molecules per cell in the early exponential growth phase but then decreased to less than 10 molecules per cell. When TCB was depleted and the cells entered the stationary phase, the mRNA content decreased slowly below the detection limit within 4 days. In order to compare detection of tcbC mRNA in pure culture and in river sediment, cells of strain P51 pregrown on TCB were added to sediment and RNAs extracted. In sediment samples containing 5 x 10(8) cells per gram the tcbC mRNA was quantifiable by RT/PCR. The mRNA recovery was about 3% as compared to the inoculum. The detection limit of the RT/PCR method was about 10(7) mRNA molecules per gram sediment or 10(6) copies per ml culture medium which corresponded in our case to 10(5) molecules per reaction vial.


Subject(s)
Chlorobenzenes/metabolism , Dioxygenases , Fresh Water/microbiology , Oxygenases/genetics , Pseudomonas/genetics , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Biodegradation, Environmental , Chlorobenzenes/analysis , Culture Media , Electrophoresis, Agar Gel , Pseudomonas/enzymology , Pseudomonas/growth & development , Pseudomonas/isolation & purification , RNA, Bacterial/analysis , RNA, Messenger/genetics
18.
J Bacteriol ; 180(21): 5505-14, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9791097

ABSTRACT

Pseudomonas sp. strain B13 carries the clcRABDE genes encoding chlorocatechol-degradative enzymes on the self-transmissible 105-kb clc element. The element integrates site and orientation specifically into the chromosomes of various bacterial recipients, with a glycine tRNA structural gene (glyV) as the integration site. We report here the localization and nucleotide sequence of the integrase gene and the activity of the integrase gene product in mediating site-specific integration. The integrase gene (int-B13) was located near the right end of the clc element. It consisted of an open reading frame (ORF) of maximally 1,971 bp with a coding capacity for 657 amino acids (aa). The full-length protein (74 kDa) was observed upon overexpression and sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation. The N-terminal 430 aa of the predicted Int-B13 protein had substantial similarity to integrases from bacteriophages of the P4 family, but Int-B13 was much larger than P4-type integrases. The C-terminal 220 aa of Int-B13 were homologous to an ORF flanking a gene cluster for naphthalene degradation in Pseudomonas aeruginosa PaK1. Similar to the bacteriophages phiR73 and P4, the clc element integrates into the 3' end of the target tRNA gene. This target site was characterized from four different recipient strains into which the clc element integrated, showing sequence specificity of the integration. In Pseudomonas sp. strain B13, a circular form of the clc element, which carries an 18-bp DNA sequence identical to the 3'-end portion of glyV as part of its attachment site (attP), could be detected. Upon chromosomal integration of the clc element into a bacterial attachment site (attB), a functional glyV was reconstructed at the right end of the element. The integration process could be demonstrated in RecA-deficient Escherichia coli with two recombinant plasmids, one carrying the int-B13 gene and the attP site and the other carrying the attB site of Pseudomonas putida F1.


Subject(s)
Chromosomes, Bacterial , DNA Nucleotidyltransferases/genetics , DNA Transposable Elements , Pseudomonas Phages/genetics , Pseudomonas putida/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , DNA, Bacterial , Escherichia coli/genetics , Integrases/genetics , Molecular Sequence Data , Pseudomonas putida/virology , Recombinases , Sequence Homology, Amino Acid , Virus Integration
19.
J Bacteriol ; 180(17): 4360-9, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9721270

ABSTRACT

Analysis of chlorobenzene-degrading transconjugants of Pseudomonas putida F1 which had acquired the genes for chlorocatechol degradation (clc) from Pseudomonas sp. strain B13 revealed that the clc gene cluster was present on a 105-kb amplifiable genetic element (named the clc element). In one such transconjugant, P. putida RR22, a total of seven or eight chromosomal copies of the entire genetic element were present when the strain was cultivated on chlorobenzene. Chromosomal integrations of the 105-kb clc element occurred in two different loci, and the target sites were located within the 3' end of glycine tRNA structural genes. Tandem amplification of the clc element was preferentially detected in one locus on the F1 chromosome. After prolonged growth on nonselective medium, transconjugant strain RR22 gradually diverged into subpopulations with lower copy numbers of the clc element. Two nonadjacent copies of the clc element in different loci always remained after deamplification, but strains with only two copies could no longer use chlorobenzene as a sole substrate. This result suggests that the presence of multiple copies of the clc gene cluster was a prerequisite for the growth of P. putida RR22 on chlorobenzene and that amplification of the element was positively selected for in the presence of chlorobenzene.


Subject(s)
Chlorobenzoates/metabolism , Chromosomes, Bacterial , Gene Amplification , Pseudomonas putida/genetics , Base Sequence , Biodegradation, Environmental , Conjugation, Genetic , Cosmids , Culture Media , Electrophoresis, Gel, Pulsed-Field , Molecular Sequence Data , Nucleic Acid Hybridization , Pseudomonas putida/growth & development , Pseudomonas putida/metabolism , Restriction Mapping
20.
Appl Environ Microbiol ; 64(6): 2126-32, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9603824

ABSTRACT

The possibilities for low-frequency horizontal transfer of the self-transmissible chlorocatechol degradative genes (clc) from Pseudomonas sp. strain B13 were investigated in activated-sludge microcosms. When the clc genes were transferred into an appropriate recipient bacterium such as Pseudomonas putida F1, a new metabolic pathway for chlorobenzene degradation was formed by complementation which could be selected for by the addition of mono- or 1, 4-dichlorobenzene (CB). Under optimized conditions with direct donor-recipient filter matings, very low transfer frequencies were observed (approximately 3.5 x 10(-8) per donor per 24 h). In contrast, in matings on agar plate surfaces, transconjugants started to appear after 8 to 10 days, and their numbers then increased during prolonged continuous incubation with CB. In activated-sludge microcosms, CB-degrading (CB+) transconjugants of strain F1 which had acquired the clc genes were detected but only when strain B13 cell densities of more than 10(5) CFU/ml could be maintained by the addition of its specific growth substrate, 3-chlorobenzoate (3CBA). The CB+ transconjugants reached final cell densities of between 10(2) and 10(3) CFU/ml. When strain B13 was inoculated separately (without the designated recipient strain F1) into an activated-sludge microcosm, CB+ transconjugants could not be detected. However, in this case a new 3CBA-degrading strain appeared which had acquired the clc genes from strain B13. The effects of selective substrates on the survival and growth of and gene transfer between bacteria degrading aromatic pollutants in a wastewater ecosystem are discussed.


Subject(s)
Catechols/metabolism , Chlorobenzenes/metabolism , Gene Transfer, Horizontal , Genes, Bacterial , Pseudomonas/genetics , Pseudomonas/metabolism , Base Sequence , Biodegradation, Environmental , Conjugation, Genetic , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Ecosystem , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sewage , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...