Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407
Filter
1.
Front Immunol ; 14: 1233318, 2023.
Article in English | MEDLINE | ID: mdl-37614228

ABSTRACT

Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated. Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients. Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed. Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses. Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.


Subject(s)
COVID-19 , Interferon Type I , Humans , Cytokines , Leukocytes, Mononuclear , Ligands , Proteomics , SARS-CoV-2 , COVID-19 Drug Treatment , Tumor Necrosis Factor-alpha , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
2.
J Neurol Neurosurg Psychiatry ; 94(12): 1056-1063, 2023 12.
Article in English | MEDLINE | ID: mdl-37434321

ABSTRACT

Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disabling long-term condition of unknown cause. The National Institute for Health and Care Excellence (NICE) published a guideline in 2021 that highlighted the seriousness of the condition, but also recommended that graded exercise therapy (GET) should not be used and cognitive-behavioural therapy should only be used to manage symptoms and reduce distress, not to aid recovery. This U-turn in recommendations from the previous 2007 guideline is controversial.We suggest that the controversy stems from anomalies in both processing and interpretation of the evidence by the NICE committee. The committee: (1) created a new definition of CFS/ME, which 'downgraded' the certainty of trial evidence; (2) omitted data from standard trial end points used to assess efficacy; (3) discounted trial data when assessing treatment harm in favour of lower quality surveys and qualitative studies; (4) minimised the importance of fatigue as an outcome; (5) did not use accepted practices to synthesise trial evidence adequately using GRADE (Grading of Recommendations, Assessment, Development and Evaluations trial evidence); (6) interpreted GET as mandating fixed increments of change when trials defined it as collaborative, negotiated and symptom dependent; (7) deviated from NICE recommendations of rehabilitation for related conditions, such as chronic primary pain and (8) recommended an energy management approach in the absence of supportive research evidence.We conclude that the dissonance between this and the previous guideline was the result of deviating from usual scientific standards of the NICE process. The consequences of this are that patients may be denied helpful treatments and therefore risk persistent ill health and disability.


Subject(s)
Cognitive Behavioral Therapy , Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/therapy , Surveys and Questionnaires , Exercise Therapy
3.
Cell Host Microbe ; 31(6): 890-901, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37321172

ABSTRACT

Trained immunity is a long-term increase in responsiveness of innate immune cells, induced by certain infections and vaccines. During the last 3 years of the COVID-19 pandemic, vaccines that induce trained immunity, such as BCG, MMR, OPV, and others, have been investigated for their capacity to protect against COVID-19. Further, trained immunity-inducing vaccines have been shown to improve B and T cell responsiveness to both mRNA- and adenovirus-based anti-COVID-19 vaccines. Moreover, SARS-CoV-2 infection itself induces inappropriately strong programs of trained immunity in some individuals, which may contribute to the long-term inflammatory sequelae. In this review, we detail these and other aspects of the role of trained immunity in SARS-CoV-2 infection and COVID-19. We also examine the learnings from the trained immunity studies conducted in the context of this pandemic and discuss how they may help us in preparing for future infectious outbreaks.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , Trained Immunity , BCG Vaccine , Immunity, Innate
5.
Physiol Rev ; 103(1): 313-346, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35981301

ABSTRACT

The mechanisms underlying innate immune memory have been extensively explored in the last decades but are in fact largely unknown. Although the specificity of adaptive immune memory in vertebrates is ensured through the recombination of immunoglobulin family genes and clonal expansion, the basic mechanisms of innate immune cells' nonspecific increased responsiveness rely on epigenetic, transcriptional, and metabolic programs after transient stimulation. Changes in these programs result in enhanced responsiveness to secondary challenges with a wide variety of stimuli. This phenomenon is termed "trained immunity" or "innate immune memory." On one hand, trained immunity improves the response to infections and vaccination, facilitating stronger innate immune responses and enhanced protection against a variety of microbial stimuli. Conversely, trained immunity may contribute to the pathophysiology of cardiovascular, autoinflammatory, and neurodegenerative diseases. In this review, we gather the current body of knowledge in this field and summarize the foundations and mechanisms of trained immunity, the different cell types involved, its consequences for health and disease, and the potential of its modulation as a therapeutic tool.


Subject(s)
Immunity, Innate , Immunologic Memory , Adaptive Immunity , Animals , Humans , Immunoglobulins , Immunologic Memory/genetics
6.
Cell Rep Med ; 3(11): 100817, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384100

ABSTRACT

The state of immune activation may guide targeted immunotherapy in sepsis. In a double-blind, double-dummy randomized clinical study, 240 patients with sepsis due to lung infection, bacteremia, or acute cholangitis were subjected to measurements of serum ferritin and HLA-DR/CD14. Patients with macrophage activation-like syndrome (MALS) or immunoparalysis were randomized to treatment with anakinra or recombinant interferon-gamma or placebo. Twenty-eight-day mortality was the primary endpoint; sepsis immune classification was the secondary endpoint. Using ferritin >4,420 ng/mL and <5,000 HLA-DR receptors/monocytes as biomarkers, patients were classified into MALS (20.0%), immunoparalysis (42.9%), and intermediate (37.1%). Mortality was 79.1%, 66.9%, and 41.6%, respectively. Survival after 7 days with SOFA score decrease was achieved in 42.9% of patients of the immunotherapy arm and 10.0% of the placebo arm (p = 0.042). Three independent immune classification strata are recognized in sepsis. MALS and immunoparalysis are proposed as stratification for personalized adjuvant immunotherapy. Clinicaltrials.gov registration NCT03332225.


Subject(s)
Macrophage Activation Syndrome , Sepsis , Humans , Sepsis/therapy , HLA-DR Antigens/metabolism , Macrophage Activation Syndrome/complications , Ferritins/therapeutic use , Immunotherapy
7.
Annu Rev Virol ; 9(1): 469-489, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35676081

ABSTRACT

Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses.


Subject(s)
Vaccines , Virus Diseases , Humans , Immunity, Innate , Immunologic Memory
8.
Elife ; 112022 02 09.
Article in English | MEDLINE | ID: mdl-35137689

ABSTRACT

Background: Chronic Q fever is a zoonosis caused by the bacterium Coxiella burnetii which can manifest as infection of an abdominal aortic aneurysm (AAA). Antibiotic therapy often fails, resulting in severe morbidity and high mortality. Whereas previous studies have focused on inflammatory processes in blood, the aim of this study was to investigate local inflammation in aortic tissue. Methods: Multiplex immunohistochemistry was used to investigate local inflammation in Q fever AAAs compared to atherosclerotic AAAs in aorta tissue specimen. Two six-plex panels were used to study both the innate and adaptive immune systems. Results: Q fever AAAs and atherosclerotic AAAs contained similar numbers of CD68+ macrophages and CD3+ T cells. However, in Q fever AAAs, the number of CD68+CD206+ M2 macrophages was increased, while expression of GM-CSF was decreased compared to atherosclerotic AAAs. Furthermore, Q fever AAAs showed an increase in both the number of CD8+ cytotoxic T cells and CD3+CD8-FoxP3+ regulatory T cells. Finally, Q fever AAAs did not contain any well-defined granulomas. Conclusions: These findings demonstrate that despite the presence of pro-inflammatory effector cells, persistent local infection with C. burnetii is associated with an immune-suppressed microenvironment. Funding: This work was supported by SCAN consortium: European Research Area - CardioVascualar Diseases (ERA-CVD) grant [JTC2017-044] and TTW-NWO open technology grant [STW-14716].


Subject(s)
Adaptive Immunity/immunology , Aortic Aneurysm, Abdominal/immunology , Atherosclerosis/immunology , Immunity, Innate/immunology , Q Fever/immunology , Aged , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/microbiology , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Female , Humans , Immunohistochemistry/methods , Inflammation/immunology , Inflammation/microbiology , Macrophages/metabolism , Male , Middle Aged , Q Fever/metabolism , Q Fever/microbiology , T-Lymphocytes/metabolism
9.
Nat Med ; 28(1): 39-50, 2022 01.
Article in English | MEDLINE | ID: mdl-35064248

ABSTRACT

Immune dysregulation is an important component of the pathophysiology of COVID-19. A large body of literature has reported the effect of immune-based therapies in patients with COVID-19, with some remarkable successes such as the use of steroids or anti-cytokine therapies. However, challenges in clinical decision-making arise from the complexity of the disease phenotypes and patient heterogeneity, as well as the variable quality of evidence from immunotherapy studies. This Review aims to support clinical decision-making by providing an overview of the evidence generated by major clinical trials of host-directed therapy. We discuss patient stratification and propose an algorithm to guide the use of immunotherapy strategies in the clinic. This will not only help guide treatment decisions, but may also help to design future trials that investigate immunotherapy in other severe infections.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/therapy , Complement Inactivating Agents/therapeutic use , Glucocorticoids/therapeutic use , Immunologic Factors/therapeutic use , Immunomodulation , Protein Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Azetidines/therapeutic use , Bradykinin/analogs & derivatives , Bradykinin/therapeutic use , Bradykinin B2 Receptor Antagonists/therapeutic use , COVID-19/immunology , Dexamethasone/therapeutic use , Drug Combinations , Factor Xa Inhibitors/therapeutic use , Heparin/therapeutic use , Humans , Hydrocortisone/therapeutic use , Imatinib Mesylate/therapeutic use , Immunization, Passive , Interferon beta-1a/therapeutic use , Interferon beta-1b/therapeutic use , Interferon-gamma/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Kallikrein-Kinin System , Piperidines/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2 , Sulfonamides/therapeutic use , COVID-19 Serotherapy
11.
Article in English | MEDLINE | ID: mdl-34815320

ABSTRACT

BACKGROUND AND OBJECTIVES: The pathophysiology of chronic fatigue syndrome (CFS) and Q fever fatigue syndrome (QFS) remains elusive. Recent data suggest a role for neuroinflammation as defined by increased expression of translocator protein (TSPO). In the present study, we investigated whether there are signs of neuroinflammation in female patients with CFS and QFS compared with healthy women, using PET with the TSPO ligand 11C-(R)-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide ([11C]-PK11195). METHODS: The study population consisted of patients with CFS (n = 9), patients with QFS (n = 10), and healthy subjects (HSs) (n = 9). All subjects were women, matched for age (±5 years) and neighborhood, aged between 18 and 59 years, who did not use any medication other than paracetamol or oral contraceptives, and were not vaccinated in the last 6 months. None of the subjects reported substance abuse in the past 3 months or reported signs of underlying psychiatric disease on the Mini-International Neuropsychiatric Interview. All subjects underwent a [11C]-PK11195 PET scan, and the [11C]-PK11195 binding potential (BPND) was calculated. RESULTS: No statistically significant differences in BPND were found for patients with CFS or patients with QFS compared with HSs. BPND of [11C]-PK11195 correlated with symptom severity scores in patients with QFS, but a negative correlation was found in patients with CFS. DISCUSSION: In contrast to what was previously reported for CFS, we found no significant difference in BPND of [11C]-PK11195 when comparing patients with CFS or QFS with healthy neighborhood controls. In this small series, we were unable to find signs of neuroinflammation in patients with CFS and QFS. TRIAL REGISTRATION INFORMATION: EudraCT number 2014-004448-37.


Subject(s)
Brain/diagnostic imaging , Fatigue Syndrome, Chronic/diagnostic imaging , Fatigue/diagnostic imaging , Neuroinflammatory Diseases/diagnostic imaging , Q Fever/diagnostic imaging , Adolescent , Adult , Amides/pharmacokinetics , Fatigue/etiology , Female , Humans , Isoquinolines/pharmacokinetics , Middle Aged , Positron-Emission Tomography , Q Fever/complications , Receptors, GABA , Young Adult
12.
Trends Immunol ; 43(2): 106-116, 2022 02.
Article in English | MEDLINE | ID: mdl-34924297

ABSTRACT

Not all individuals exposed to a pathogen develop illness: some are naturally resistant whereas others develop an asymptomatic infection. Epidemiological studies suggest that there is similar variability in susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We propose that natural resistance is part of the disease history in some individuals exposed to this new coronavirus. Epidemiological arguments for natural resistance to SARS-CoV-2 are the lower seropositivity of children compared to adults, studies on closed environments of ships with outbreaks, and prevalence studies in some developing countries. Potential mechanisms of natural resistance include host genetic variants, viral interference, cross-protective natural antibodies, T cell immunity, and highly effective innate immune responses. Better understanding of natural resistance can help to advance preventive and therapeutic measures against infections for improved preparedness against potential future pandemics.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Pandemics , SARS-CoV-2 , T-Lymphocytes
13.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Article in English | MEDLINE | ID: mdl-34663978

ABSTRACT

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Heredity , Immunity, Innate/genetics , Listeria monocytogenes/immunology , Listeriosis/immunology , Myeloid Cells/immunology , Animals , Candida albicans/pathogenicity , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Listeria monocytogenes/pathogenicity , Listeriosis/genetics , Listeriosis/metabolism , Listeriosis/microbiology , Male , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Spermatozoa/immunology , Spermatozoa/metabolism , Transcription, Genetic
14.
Elife ; 102021 09 07.
Article in English | MEDLINE | ID: mdl-34488939

ABSTRACT

As our ancestors migrated throughout different continents, natural selection increased the presence of alleles advantageous in the new environments. Heritable variations that alter the susceptibility to diseases vary with the historical period, the virulence of the infections, and their geographical spread. In this study we built polygenic scores for heritable traits that influence the genetic adaptation in the production of cytokines and immune-mediated disorders, including infectious, inflammatory, and autoimmune diseases, and applied them to the genomes of several ancient European populations. We observed that the advent of the Neolithic was a turning point for immune-mediated traits in Europeans, favoring those alleles linked with the development of tolerance against intracellular pathogens and promoting inflammatory responses against extracellular microbes. These evolutionary patterns are also associated with an increased presence of traits related to inflammatory and auto-immune diseases.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Evolution, Molecular , Immune System , Adaptation, Physiological , Alleles , Autoimmune Diseases , Gene Expression , Inflammation , Selection, Genetic
15.
Lancet Rheumatol ; 3(10): e690-e697, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34396156

ABSTRACT

BACKGROUND: Anakinra might improve the prognosis of patients with moderate to severe COVID-19 (ie, patients requiring oxygen supplementation but not yet receiving organ support). We aimed to assess the effect of anakinra treatment on mortality in patients admitted to hospital with COVID-19. METHODS: For this systematic review and individual patient-level meta-analysis, a systematic literature search was done on Dec 28, 2020, in Medline (PubMed), Cochrane, medRxiv, bioRxiv, and the ClinicalTrials.gov databases for randomised trials, comparative studies, and observational studies of patients admitted to hospital with COVID-19, comparing administration of anakinra with standard of care, or placebo, or both. The search was repeated on Jan 22, 2021. Individual patient-level data were requested from investigators and corresponding authors of eligible studies; if individual patient-level data were not available, published data were extracted from the original reports. The primary endpoint was mortality after 28 days and the secondary endpoint was safety (eg, the risk of secondary infections). This study is registered on PROSPERO (CRD42020221491). FINDINGS: 209 articles were identified, of which 178 full-text articles fulfilled screening criteria and were assessed. Aggregate data on 1185 patients from nine studies were analysed, and individual patient-level data on 895 patients were provided from six of these studies. Eight studies were observational and one was a randomised controlled trial. Most studies used historical controls. In the individual patient-level meta-analysis, after adjusting for age, comorbidities, baseline ratio of the arterial partial oxygen pressure divided by the fraction of inspired oxygen (PaO2/FiO2), C-reactive protein (CRP) concentrations, and lymphopenia, mortality was significantly lower in patients treated with anakinra (38 [11%] of 342) than in those receiving standard of care with or without placebo (137 [25%] of 553; adjusted odds ratio [OR] 0·32 [95% CI 0·20-0·51]). The mortality benefit was similar across subgroups regardless of comorbidities (ie, diabetes), ferritin concentrations, or the baseline PaO2/FiO2. In a subgroup analysis, anakinra was more effective in lowering mortality in patients with CRP concentrations higher than 100 mg/L (OR 0·28 [95% CI 0·17-0·47]). Anakinra showed a significant survival benefit when given without dexamethasone (OR 0·23 [95% CI 0·12-0·43]), but not with dexamethasone co-administration (0·72 [95% CI 0·37-1·41]). Anakinra was not associated with a significantly increased risk of secondary infections when compared with standard of care (OR 1·35 [95% CI 0·59-3·10]). INTERPRETATION: Anakinra could be a safe, anti-inflammatory treatment option to reduce the mortality risk in patients admitted to hospital with moderate to severe COVID-19 pneumonia, especially in the presence of signs of hyperinflammation such as CRP concentrations higher than 100 mg/L. FUNDING: Sobi.

17.
Elife ; 102021 03 08.
Article in English | MEDLINE | ID: mdl-33682678

ABSTRACT

Background: It was studied if early suPAR-guided anakinra treatment can prevent severe respiratory failure (SRF) of COVID-19. Methods: A total of 130 patients with suPAR ≥6 ng/ml were assigned to subcutaneous anakinra 100 mg once daily for 10 days. Primary outcome was SRF incidence by day 14 defined as any respiratory ratio below 150 mmHg necessitating mechanical or non-invasive ventilation. Main secondary outcomes were 30-day mortality and inflammatory mediators; 28-day WHO-CPS was explored. Propensity-matched standard-of care comparators were studied. Results: 22.3% with anakinra treatment and 59.2% comparators (hazard ratio, 0.30; 95% CI, 0.20-0.46) progressed into SRF; 30-day mortality was 11.5% and 22.3% respectively (hazard ratio 0.49; 95% CI 0.25-0.97). Anakinra was associated with decrease in circulating interleukin (IL)-6, sCD163 and sIL2-R; IL-10/IL-6 ratio on day 7 was inversely associated with SOFA score; patients were allocated to less severe WHO-CPS strata. Conclusions: Early suPAR-guided anakinra decreased SRF and restored the pro-/anti-inflammatory balance. Funding: This study was funded by the Hellenic Institute for the Study of Sepsis, Technomar Shipping Inc, Swedish Orphan Biovitrum, and the Horizon 2020 Framework Programme. Clinical trial number: NCT04357366.


People infected with the SARS-CoV-2 virus, which causes COVID-19, can develop severe respiratory failure and require a ventilator to keep breathing, but this does not happen to every infected individual. Measuring a blood protein called suPAR (soluble urokinase plasminogen activator receptor) may help identify patients at the greatest risk of developing severe respiratory failure and requiring a ventilator. Previous investigations have suggested that measuring suPAR can identify pneumonia patients at highest risk for developing respiratory failure. The protein can be measured by taking a blood sample, and its levels provide a snapshot of how the body's immune system is reacting to infection, and of how it may respond to treatment. Anakinra is a drug that forms part of a class of medications called interleukin antagonists. It is commonly prescribed alone or in combination with other medications to reduce pain and swelling associated with rheumatoid arthritis. Kyriazopoulou et al. investigated whether treating COVID-19 patients who had developed pneumonia with anakinra could prevent the use of a ventilator and lower the risk of death. The findings show that treating COVID-19 patients with an injection of 100 milligrams of anakinra for ten days may be an effective approach because the drug combats inflammation. Kyriazopoulou et al. examined various markers of the immune response and discovered that anakinra was able to improve immune function, protecting a significant number of patients from going on a ventilator. The drug was also found to be safe and cause no significant adverse side effects. Administering anakinra decreased of the risk of progression into severe respiratory failure by 70%, and reduced death rates significantly. These results suggest that it may be beneficial to use suPAR as an early biomarker for identifying those individuals at highest risk for severe respiratory failure, and then treat them with anakinra. While the findings are promising, they must be validated in larger studies.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , COVID-19 Drug Treatment , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Respiratory Insufficiency/prevention & control , Aged , Aged, 80 and over , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , COVID-19/mortality , Female , Humans , Incidence , Injections, Subcutaneous , Interleukin-10/blood , Interleukin-6/blood , Male , Middle Aged , Receptors, Cell Surface/blood , Receptors, Urokinase Plasminogen Activator/blood , Receptors, Urokinase Plasminogen Activator/metabolism , Respiration, Artificial , Respiratory Insufficiency/epidemiology , SARS-CoV-2 , Standard of Care , Treatment Outcome
18.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33524124

ABSTRACT

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphopenia/blood , Lymphopenia/immunology , Lymphopenia/virology , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index
20.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33306484

ABSTRACT

A number of coronavirus disease 2019 (COVID-19) vaccine candidates have shown promising results, but substantial uncertainty remains regarding their effectiveness and global rollout. Boosting innate immunity with bacillus Calmette Guérin (BCG) or other live attenuated vaccines may also play a role in the fight against the COVID-19 pandemic. BCG has long been known for its nonspecific beneficial effects that are most likely explained by epigenetic and metabolic reprogramming of innate immune cells, termed trained immunity. In this issue of the JCI, Rivas et al. add to these arguments by showing that BCG-vaccinated health care providers from a Los Angeles health care organization had lower rates of COVID-19 diagnoses and seropositivity compared with unvaccinated individuals. Prospective clinical trials are thus warranted to explore the effects of BCG vaccination in COVID-19. We posit that beyond COVID-19, vaccines such as BCG that elicit trained immunity may mitigate the impact of emerging pathogens in future pandemics.


Subject(s)
BCG Vaccine , COVID-19 , Health Personnel , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...