Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Life Sci Res ; 34(2): 131-160, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38144373

ABSTRACT

It is well established that oil palm is one of the most efficient and productive oil crops. However, oil palm agriculture is also one of the threats to tropical biodiversity. This study aims to investigate how set-aside areas in an oil palm plantation affect bird biodiversity. The research area includes two set-asides areas: peat swamp forest and riparian reserves and two oil palm sites adjacent to reserved forest sites. A total of 3,074 birds comprising 100 species from 34 families were observed in an oil palm plantation landscape on peatland located in the northern part of Borneo, Sarawak, Malaysia. Results showed that efforts by set-asides forest areas in large scale of oil palm dominated landscapes supported distinct bird species richness. High percentage of the canopies and shrub covers had a positive effect on bird species richness at area between oil palm and peat swamp forest. Herbaceous cover with height less than 1 m influenced the abundance of birds in the plantation closed to the peat swamp forest. The set-aside areas in oil palm plantations are essential in supporting bird's refuges and should be part of oil palm landscape management to improve biodiversity conservation. Thus, provided the forest set-aside areas are large enough and risks to biodiversity and habitat are successfully managed, oil palm can play an important role in biodiversity conservation.

2.
Oecologia ; 201(3): 863-875, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36914820

ABSTRACT

Large-scale deforestation in the tropics, triggered by logging and subsequent agricultural monoculture has a significant adverse impact on biodiversity due to habitat degradation. Here, we measured the diversity of butterfly species in three agricultural landscapes, agroforestry orchards, oil palm, and rubber tree plantations. Butterfly species were counted at 127 sampling points over the course of a year using the point count method. We found that agroforestry orchards supported a greater number of butterfly species (74 species) compared to rubber tree (61 species) and oil palm plantations (54 species) which were dominated by generalist (73%) followed by forest specialists (27%). We found no significant difference of butterfly species composition between agroforestry orchards and rubber tree plantation, with both habitats associated with more butterfly species compared to oil palm plantations. This indicates butterflies were able to persist better in certain agricultural landscapes. GLMMs suggested that tree height, undergrowth coverage and height, and elevation determined butterfly diversity. Butterfly species richness was also influenced by season and landscape-level variables such as proximity to forest, mean NDVI, and habitat. Understanding the factors that contributed to butterfly species richness in an agroecosystem, stakeholders should consider management practices to improve biodiversity conservation such as ground vegetation management and retaining adjacent forest areas to enhance butterfly species richness. Furthermore, our findings suggest that agroforestry system should be considered to enhance biodiversity in agricultural landscapes.


Subject(s)
Butterflies , Animals , Ecosystem , Biodiversity , Forests , Agriculture , Conservation of Natural Resources
4.
Nat Commun ; 6: 6857, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25919449

ABSTRACT

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

5.
Ecology ; 89(12): 3490-502, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19137954

ABSTRACT

Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.


Subject(s)
Ecosystem , Plant Leaves/growth & development , Trees/growth & development , Tropical Climate , Plant Leaves/physiology , Sunlight , Time Factors , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...