Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(1): 115-127, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356267

ABSTRACT

A strategy toward epitope-selective functionalized nanoparticles is introduced in the following: ultrasmall gold nanoparticles (diameter of the metallic core about 2 nm) were functionalized with molecular tweezers that selectively attach lysine and arginine residues on protein surfaces. Between 11 and 30 tweezer molecules were covalently attached to the surface of each nanoparticle by copper-catalyzed azide alkyne cycloaddition (CuAAC), giving multiavid agents to target proteins. The nanoparticles were characterized by high-resolution transmission electron microscopy, differential centrifugal sedimentation, and 1H NMR spectroscopy (diffusion-ordered spectroscopy, DOSY, and surface composition). The interaction of these nanoparticles with the model proteins hPin1 (WW domain; hPin1-WW) and Survivin was probed by NMR titration and by isothermal titration calorimetry (ITC). The binding to the WW domain of hPin1 occurred with a KD of 41 ± 2 µM, as shown by ITC. The nanoparticle-conjugated tweezers targeted cationic amino acids on the surface of hPin1-WW in the following order: N-terminus (G) ≈ R17 > R14 ≈ R21 > K13 > R36 > K6, as shown by NMR spectroscopy. Nanoparticle recognition of the larger protein Survivin was even more efficient and occurred with a KD of 8 ± 1 µM, as shown by ITC. We conclude that ultrasmall nanoparticles can act as versatile carriers for artificial protein ligands and strengthen their interaction with the complementary patches on the protein surface.


Subject(s)
Metal Nanoparticles , Nanoparticles , Amino Acids , Gold , Ligands , Models, Molecular
2.
Chemistry ; 27(4): 1451-1464, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-32959929

ABSTRACT

Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.

3.
Sci Rep ; 10(1): 18033, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093563

ABSTRACT

The blood-brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3-4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/administration & dosage , Models, Biological , Spheroids, Cellular/metabolism , Biological Transport , Cells, Cultured , Endothelial Cells/metabolism , Humans , Metal Nanoparticles/chemistry , Pericytes/metabolism
4.
Langmuir ; 35(22): 7191-7204, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31039607

ABSTRACT

Ultrasmall gold nanoparticles (core diameter 2 nm) were surface-conjugated with azide groups by attaching the azide-functionalized tripeptide lysine(N3)-cysteine-asparagine with ∼117 molecules on each nanoparticle. A covalent surface modification with alkyne-containing molecules was then possible by copper-catalyzed click chemistry. The successful clicking to the nanoparticle surface was demonstrated with 13C-labeled propargyl alcohol. All steps of the nanoparticle surface conjugation were verified by extensive NMR spectroscopy on dispersed nanoparticles. The particle diameter and the dispersion state were assessed by high-resolution transmission electron microscopy (HRTEM), differential centrifugal sedimentation (DCS), and 1H-DOSY NMR spectroscopy. The clicking of fluorescein (FAM-alkyne) gave strongly fluorescing ultrasmall nanoparticles that were traced inside eukaryotic cells. The uptake of these nanoparticles after 24 h by HeLa cells was very efficient and showed that the nanoparticles even penetrated the nuclear membrane to a very high degree (in contrast to dissolved FAM-alkyne alone that did not enter the cell). About 8 fluorescein molecules were clicked to each nanoparticle.

5.
Acta Biomater ; 57: 414-425, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28552820

ABSTRACT

Avidin was covalently conjugated to the surface of calcium phosphate nanoparticles, coated with a thin silica shell and terminated by sulfhydryl groups (diameter of the solid core about 50nm), with a bifunctional crosslinker connecting the amino groups of avidin to the sulfhydryl group on the nanoparticle surface. This led to a versatile nanoparticle system where all kinds of biotinylated (bio-)molecules can be easily attached to the surface by the non-covalent avidin-biotin-complex formation. It also permits the attachment of different biomolecules on the same nanoparticle (heteroavidity), creating a modular system for specific applications in medicine and biology. The variability of the binding to the nanoparticle surface of the was demonstrated with various biotinylated molecules, i.e. fluorescent dyes and antibodies. The accessibility of the conjugated avidin was demonstrated by a fluorescence-quenching assay. About 2.6 binding sites for biotin were accessible on each avidin tetramer. Together with a number of about 240 avidin tetramer units per nanoparticle, this offers about 600 binding sites for biotin on each nanoparticle. The uptake of fluorescently labelled avidin-conjugated calcium phosphate nanoparticles by HeLa cells showed the co-localization of fluorescent avidin and fluorescent biotin, indicating the stability of the complex under cell culture conditions. CD11c-antibody functionalized nanoparticles specifically targeted antigen-presenting immune cells (dendritic cells; DCs) in vitro and in vivo (mice) with high efficiency. STATEMENT OF SIGNIFICANCE: Calcium phosphate nanoparticles have turned out to be very useful transporters for biomolecules into cells, both in vitro and in vivo. However, their covalent surface functionalization with antibodies, fluorescent dyes, or proteins requires a separate chemical synthesis for each kind of surface molecule. We have therefore developed avidin-terminated calcium phosphate nanoparticles to which all kinds of biotinylated molecules can be easily attached, also as a mixture of two or more molecules. This non-covalent bond is stable both in cell culture and after injection into mice in vivo. Thus, we have created a highly versatile system for many applications, from the delivery of biomolecules over the targeting of cells and tissue to in vivo imaging.


Subject(s)
Avidin , Calcium Phosphates , Dendritic Cells/immunology , Drug Delivery Systems/methods , Nanoparticles/chemistry , Animals , Avidin/chemistry , Avidin/pharmacology , CD11c Antigen/immunology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , HeLa Cells , Humans , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...