Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 86(4): 046106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933904

ABSTRACT

We present a novel approach for filtering Rayleigh scattering and stray light from Raman scattering in a gas discharge, using a volume Bragg grating as a notch filter. For low frequency rotational Raman contributions, it is essential to filter out Rayleigh scattering and stray light at the laser wavelength to be able to measure an undisturbed Raman spectrum. Using the Bragg grating, having an optical density of 3.1 at the central wavelength of 532 nm and a full width at half maximum of 7 cm(-1), we were able to measure a nearly full rotational CO2 spectrum (1.56 cm(-1) peak-to-peak separation). The rotational temperature in a CO2 discharge was determined with an accuracy of 2%.

2.
Rev Sci Instrum ; 83(12): 123505, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23277985

ABSTRACT

An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T(e)) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n(e) and 6% in T(e) (at n(e) = 9.4 × 10(18) m(-3)) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n(e) > 2.8 × 10(20) m(-3). The minimum measurable density and temperature are n(e) < 1 × 10(17) m(-3) and T(e) < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n(0)) of the plasma can be measured with an accuracy of 25% (at n(0) = 1 × 10(20) m(-3)). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 046405, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999541

ABSTRACT

A potential buildup in front of a magnetized cascaded arc hydrogen plasma source is explored via E x B rotation and plate potential measurements. Plasma rotation approaches thermal speeds with maximum velocities of 10 km/s. The diagnostic for plasma rotation is optical emission spectroscopy on the Balmer-beta line. Asymmetric spectra are observed. A detailed consideration is given on the interpretation of such spectra with a two distribution model. This consideration includes radial dependence of emission determined by Abel inversion of the lateral intensity profile. Spectrum analysis is performed considering Doppler shift, Doppler broadening, Stark broadening, and Stark splitting.

4.
Rev Sci Instrum ; 79(1): 013505, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248032

ABSTRACT

A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a "Generation III" image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n(e)) and 6% in the electron temperature (T(e)) at n(e) = 4 x 10(19) m(-3). This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9 x 10(17) m(-3) in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n(e) and T(e) measurement is 7 x 10(20)n(e) J, which means that single shot measurements are possible for n(e)>2 x 10(21) m(-3).

SELECTION OF CITATIONS
SEARCH DETAIL
...