Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 130(10): 2069-2090, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28707249

ABSTRACT

KEY MESSAGE: QTL consistent across seasons were detected for resistance to cassava brown streak disease induced root necrosis and foliar symptoms. The CMD2 locus was detected in an East African landrace, and comprised two QTL. Cassava production in Africa is compromised by cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). To reduce costs and increase the precision of resistance breeding, a QTL study was conducted to identify molecular markers linked to resistance against these diseases. A bi-parental F1 mapping population was developed from a cross between the Tanzanian farmer varieties, Namikonga and Albert. A one-step genetic linkage map comprising 943 SNP markers and 18 linkage groups spanning 1776.2 cM was generated. Phenotypic data from 240 F1 progeny were obtained from two disease hotspots in Tanzania, over two successive seasons, 2013 and 2014. Two consistent QTLs linked to resistance to CBSD-induced root necrosis were identified in Namikonga on chromosomes II (qCBSDRNFc2Nm) and XI (qCBSDRNc11Nm) and a putative QTL on chromosome XVIII (qCBSDRNc18Nm). qCBSDRNFc2Nm was identified at Naliendele in both seasons. The same QTL was also associated with CBSD foliar resistance. qCBSDRNc11Nm was identified at Chambezi in both seasons, and was characterized by three peaks, spanning a distance of 253 kb. Twenty-seven genes were identified within this region including two LRR proteins and a signal recognition particle. In addition, two highly significant CMD resistance QTL (qCMDc12.1A and qCMDc12.2A) were detected in Albert, on chromosome 12. Both qCMDc12.1A and qCMDc12.2A lay within the range of markers reported earlier, defining the CMD2 locus. This is the first time that two loci have been identified within the CMD2 QTL, and in germplasm of apparent East African origin. Additional QTLs with minor effects on CBSD and CMD resistance were also identified.


Subject(s)
Disease Resistance/genetics , Manihot/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Genetic Linkage , Genotype , Manihot/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Tanzania
2.
Fungal Genet Biol ; 81: 62-72, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26004989

ABSTRACT

Alternaria spp. from sect. Alternaria are frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis. Since Alternaria is omnipresent in the outdoor environment, it is thought that the indoor spore concentration is mainly influenced by the outdoor spore concentration. However, few studies have investigated indoor Alternaria isolates, or attempted a phylogeographic or population genetic approach to investigate their movement. Therefore, the aim of the current study was to investigate the molecular diversity of indoor Alternaria isolates in the USA, and to test for recombination, using these approaches. Alternaria isolates collected throughout the USA were identified using ITS, gapdh and endoPG gene sequencing. This was followed by genotyping and population genetic inference of isolates belonging to Alternaria sect. Alternaria together with 37 reference isolates, using five microsatellite markers. Phylogenetic analyses revealed that species of Alternaria sect. Alternaria represented 98% (153 isolates) of the indoor isolates collected throughout the USA, of which 137 isolates could be assigned to A. alternata, 15 to the A. arborescens species complex and a single isolate to A. burnsii. The remaining 2% (3 isolates) represented sect. Infectoriae (single isolate) and sect. Pseudoulocladium (2 isolates). Population assignment analyses of the 137 A. alternata isolates suggested that subpopulations did not exist within the sample. The A. alternata isolates were thus divided into four artificial subpopulations to represent four quadrants of the USA. Forty-four isolates representing the south-western quadrant displayed the highest level of uniqueness based on private alleles, while the highest level of gene flow was detected between the south-eastern (32 isolates) and south-western quadrants. Genotypic diversity was high for all quadrants, and a test for linkage disequilibrium suggested that A. alternata has a cryptic sexual cycle. These statistics could be correlated with environmental factors, suggesting that indoor A. alternata isolates, although extremely diverse, have a continental distribution and high levels of gene flow over the continent.


Subject(s)
Alternaria/classification , Alternaria/genetics , Genetic Variation , Phylogeography , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Genotyping Techniques , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Microsatellite Repeats , Molecular Sequence Data , Mycological Typing Techniques , Polygalacturonase/genetics , Sequence Analysis, DNA , United States
3.
Stud Mycol ; 80: 189-245, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26955195

ABSTRACT

The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), ß-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...