Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Virol ; 80(12): 5927-40, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16731931

ABSTRACT

The RNA replication complexes of mammalian positive-stranded RNA viruses are generally associated with (modified) intracellular membranes, a feature thought to be important for creating an environment suitable for viral RNA synthesis, recruitment of host components, and possibly evasion of host defense mechanisms. Here, using a panel of replicase-specific antisera, we have analyzed the earlier stages of severe acute respiratory syndrome coronavirus (SARS-CoV) infection in Vero E6 cells, in particular focusing on the subcellular localization of the replicase and the ultrastructure of the associated membranes. Confocal immunofluorescence microscopy demonstrated the colocalization, throughout infection, of replicase cleavage products containing different key enzymes for SARS-CoV replication. Electron microscopy revealed the early formation and accumulation of typical double-membrane vesicles, which probably carry the viral replication complex. The vesicles appear to be fragile, and their preservation was significantly improved by using cryofixation protocols and freeze substitution methods. In immunoelectron microscopy, the virus-induced vesicles could be labeled with replicase-specific antibodies. Opposite to what was described for mouse hepatitis virus, we did not observe the late relocalization of specific replicase subunits to the presumed site of virus assembly, which was labeled using an antiserum against the viral membrane protein. This conclusion was further supported using organelle-specific marker proteins and electron microscopy. Similar morphological studies and labeling experiments argued against the previously proposed involvement of the autophagic pathway as the source for the vesicles with which the replicase is associated and instead suggested the endoplasmic reticulum to be the most likely donor of the membranes that carry the SARS-CoV replication complex.


Subject(s)
Chlorocebus aethiops/physiology , Intracellular Membranes/ultrastructure , Replication Origin , Transport Vesicles/ultrastructure , Virus Replication , Animals , Endoplasmic Reticulum/microbiology , Endoplasmic Reticulum/virology , Intracellular Membranes/metabolism , Microscopy, Electron , RNA-Dependent RNA Polymerase/analysis , Severe acute respiratory syndrome-related coronavirus , Vero Cells
2.
J Virol ; 78(23): 13019-27, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15542653

ABSTRACT

Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae of the order Nidovirales. EAV particles contain seven structural proteins: the nucleocapsid protein N, the unglycosylated envelope proteins M and E, and the N-glycosylated membrane proteins GP(2b) (previously named G(S)), GP(3), GP(4), and GP(5) (previously named G(L)). Proteins N, M, and GP(5) are major virion components, E occurs in virus particles in intermediate amounts, and GP(4), GP(3), and GP(2b) are minor structural proteins. The M and GP(5) proteins occur in virus particles as disulfide-linked heterodimers while the GP(4), GP(3), and GP(2b) proteins are incorporated into virions as a heterotrimeric complex. Here, we studied the effect on virus assembly of inactivating the structural protein genes one by one in the context of a (full-length) EAV cDNA clone. It appeared that the three major structural proteins are essential for particle formation, while the other four virion proteins are dispensable. When one of the GP(2b), GP(3), or GP(4) proteins was missing, the incorporation of the remaining two minor envelope glycoproteins was completely blocked while that of the E protein was greatly reduced. The absence of E entirely prevented the incorporation of the GP(2b), GP(3), and GP(4) proteins into viral particles. EAV particles lacking GP(2b), GP(3), GP(4), and E did not markedly differ from wild-type virions in buoyant density, major structural protein composition, electron microscopic appearance, and genomic RNA content. On the basis of these results, we propose a model for the EAV particle in which the GP(2b)/GP(3)/GP(4) heterotrimers are positioned, in association with a defined number of E molecules, above the vertices of the putatively icosahedral nucleocapsid.


Subject(s)
Equartevirus/physiology , Viral Structural Proteins/physiology , Virus Assembly , Animals , Cells, Cultured , Cricetinae , Dimerization , Equartevirus/ultrastructure , Microscopy, Electron , Viral Envelope Proteins/physiology , Viral Matrix Proteins/physiology , Viral Structural Proteins/chemistry , Virion/physiology
3.
Proc Natl Acad Sci U S A ; 99(21): 13465-70, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12361978

ABSTRACT

The 5' UTR of turnip yellow mosaic virus RNA contains two conserved hairpins with internal loops consisting of C.C and C.A mismatches. In this article, evidence is presented indicating that the 5' proximal hairpin functions as an encapsidation initiation signal. Extensive mutagenesis studies on this hairpin and sequencing of virus progeny showed a clear preference for C.C and C.A mismatches within the internal loop. The importance of these mismatches lies in their pH-dependent protonation and stable base pair formation. Encapsidation efficiency was found to be severely affected for several mutants lacking the protonatable mismatches in the internal loop of the 5' proximal hairpin. Furthermore, gel mobility-shift assays were performed with various RNA hairpins and empty capsids with a hole. Protonatable hairpins containing C.C and/or C.A pairs were found to bind specifically to the interior of the protein shell under acidic conditions (pH 4.5) in the presence of spermidine. Based on these results we propose that this binding of protonated cytosines to the coat protein of turnip yellow mosaic virus may represent a new motif in RNA-protein interactions.


Subject(s)
RNA, Viral/chemistry , Tymovirus/chemistry , 5' Untranslated Regions , Base Pair Mismatch , Base Pairing , Base Sequence , Binding Sites , Capsid/chemistry , Mutagenesis , Nucleic Acid Conformation , Protons , RNA, Viral/genetics , Tymovirus/genetics , Tymovirus/physiology , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL