Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Chem Sci ; 14(32): 8458-8465, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37592992

ABSTRACT

We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature 1H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors. Interestingly, the hydroxy group at the stereocentre enables a hydrogen bond with the carbonyl groups of the barbituric acid lower half, which drives a sub-picosecond excited-state isomerisation, as observed spectroscopically. Computational simulations predict an excited state "lasso" mechanism where the intramolecular hydrogen bond pulls the molecule towards the formation of the metastable state, with a high predicted quantum yield of isomerisation (68%) in gas phase.

3.
J Org Chem ; 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36223433

ABSTRACT

Coupled motion is ubiquitous in Nature as it forms the base for the direction, amplification, propagation, and synchronization of movement. Herein, we present experimental proof for the coupling of the rocking motion of a dihydroanthracene stator moiety with the light-induced rotational movement of an overcrowded alkene-based molecular motor. The motor was desymmetrized, introducing two different alkyl substituents to the stator part of the molecular scaffold, resulting in the formation of two diastereomers with opposite axial chirality. The structure of the two isomers is determined with nuclear Overhauser effect spectroscopy NMR and single-crystal X-ray analysis. The desymmetrization enables the study of the coupled motion, that is, rotation and oscillation, by 1H NMR, findings that are further supported by density functional theory calculations. A new handle to regulate the rotational speed of the motor through functionalization in the bottom half was also introduced, as the thermal barrier for thermal helix inversion is found to be largely dependent on the alkyl substituents and its orientation toward the upper half of the motor scaffold. In addition to the commonly observed successive photochemical and thermal steps driving the rotation of the motor, we find that the motor undergoes photochemically driven rotation in three of the four steps of the rotation cycle. Hence, this result extends the scope of molecular motors capable of photon-only rotary behavior.

4.
Mol Microbiol ; 109(3): 278-290, 2018 08.
Article in English | MEDLINE | ID: mdl-29923648

ABSTRACT

Bacteria regulate cell physiology in response to extra- and intracellular cues. Recent work showed that metabolic fluxes are reported by specific metabolites, whose concentrations correlate with flux through the respective metabolic pathway. An example of a flux-signaling metabolite is fructose-1,6-bisphosphate (FBP). In turn, FBP was proposed to allosterically regulate master regulators of carbon metabolism, Cra in Escherichia coli and CggR in Bacillus subtilis. However, a number of questions on the FBP-mediated regulation of these transcription factors is still open. Here, using thermal shift assays and microscale thermophoresis we demonstrate that FBP does not bind Cra, even at millimolar physiological concentration, and with electrophoretic mobility shift assays we also did not find FBP-mediated impairment of Cra's affinity for its operator site, while fructose-1-phosphate does. Furthermore, we show for the first time that FBP binds CggR within the millimolar physiological concentration range of the metabolite, and decreases DNA-binding activity of this transcription factor. Molecular docking experiments only identified a single FBP binding site CggR. Our results provide the long thought after clarity with regards to regulation of Cra activity in E. coli and reveals that E. coli and B. subtilis use distinct cellular mechanism to transduce glycolytic flux signals into transcriptional regulation.


Subject(s)
Bacillus subtilis/metabolism , Carbon Cycle/physiology , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Fructosediphosphates/metabolism , Repressor Proteins/metabolism , Binding Sites , DNA/genetics , DNA/metabolism , Escherichia coli Proteins/genetics , Molecular Docking Simulation , Protein Binding , Repressor Proteins/genetics
5.
Bioinformatics ; 34(12): 2053-2060, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29365182

ABSTRACT

Motivation: Polypeptide sequence length is the single dominant factor hampering the effectiveness of currently available software tools for de novo calculation of amino acid-specific protonation constants in disordered polypeptides. Results: We have developed pepKalc, a robust simulation software for the comprehensive evaluation of protein electrostatics in unfolded states. Our software completely removes the limitations of the previously reported Monte-Carlo approaches in the computation of protein electrostatics by using a hybrid approach that effectively combines exact and mean-field calculations to rapidly obtain accurate results. Paired with a modern architecture GPU, pepKalc is capable of evaluating protonation behavior for an arbitrary-size polypeptide in a sub-second time regime. Availability and implementation: http://protein-nmr.org and https://github.com/PeptoneInc/pepkalc.


Subject(s)
Computational Biology/methods , Peptides/chemistry , Software , Static Electricity , Humans , Monte Carlo Method , Peptides/metabolism , alpha-Synuclein/chemistry
6.
J Am Chem Soc ; 139(28): 9650-9661, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28628318

ABSTRACT

Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines based on light-driven rotary motion. Herein we demonstrate the thermal and photochemical rotational behavior of a series of third-generation light-driven molecular motors. The steric hindrance of the core unit exerted upon the rotors proved pivotal in controlling the speed of rotation, where a smaller size results in lower barriers. The presence of a pseudo-asymmetric carbon center provides the motor with unidirectionality. Tuning of the steric effects of the substituents at the bridgehead allows for the precise control of the direction of disrotary motion, illustrated by the design of two motors which show opposite rotation with respect to a methyl substituent. A third-generation molecular motor with the potential to be the fastest based on overcrowded alkenes to date was used to visualize the equal rate of rotation of both its rotor units. The autonomous rotational behavior perfectly followed the predicted model, setting the stage for more advanced motors for functional dynamic systems.

7.
Chem Sci ; 6(12): 7311-7318, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-28757990

ABSTRACT

The external photocontrol over peptide folding, by the incorporation of molecular photoswitches into their structure, provides a powerful tool to study biological processes. However, it is limited so far to switches that exhibit only a rather limited geometrical change upon photoisomerization and that show thermal instability of the photoisomer. Here we describe the use of an overcrowded alkene photoswitch to control a model ß-hairpin peptide. This photoresponsive unit undergoes a large conformational change and has two thermally stable isomers which has major influence on the secondary structure and the aggregation of the peptide, permitting the phototriggered formation of amyloid-like fibrils.

SELECTION OF CITATIONS
SEARCH DETAIL
...