Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343161

ABSTRACT

The nematode Caenorhabditis elegans is a valuable model for ecotoxicological research, yet limited attention has been given to understanding how it absorbs, distributes, metabolizes, and excretes chemicals. This is crucial for C. elegans because the organism is known to have strong uptake barriers that are known to be susceptible to potential confounding effects of the presence of Escherichia coli as a food source. One frequently studied compound in C. elegans is the antidepressant fluoxetine, which has an active metabolite norfluoxetine. In this study, we evaluated the toxicokinetics and relative potency of norfluoxetine and fluoxetine in chemotaxis and activity tests. Toxicokinetics experiments were conducted with varying times, concentrations of fluoxetine, and in the absence or presence of E. coli, simulated with a one-compartment model. Our findings demonstrate that C. elegans can take up fluoxetine and convert it into norfluoxetine. Norfluoxetine proved slightly more potent and had a longer elimination half-life. The bioconcentration factor, uptake, and elimination rate constants depended on exposure levels, duration, and the presence of E. coli in the exposure medium. These findings expand our understanding of toxicokinetic modeling in C. elegans for different exposure scenarios, underlining the importance of considering norfluoxetine formation in exposure and bioactivity assessments of fluoxetine.

2.
Ecotoxicol Environ Saf ; 250: 114493, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36608562

ABSTRACT

Antidepressant prescriptions are on a rise worldwide and this increases the concerns for the impacts of these pharmaceuticals on nontarget organisms. Antidepressants are neuroactive compounds that can affect organism's behavior. Behavior is a sensitive endpoint that may also propagate effects at a population level. Another interesting aspect of antidepressants is that they have shown to induce non-monotonic dose-response (NMDR) curves. While such NMDR relationships may have clear implications for the environmental risk, the resolution of current studies is often too coarse to be able to detect relevant NMDR. Therefore, the current study was performed into the behavioral effects (activity, feeding and chemotaxis) in Caenorhabditis elegans as the model organism of the selective serotonin reuptake inhibitors fluoxetine and sertraline and the acetylcholinesterase inhibiting pesticide chlorpyrifos, using a wide range of concentrations (ng/l to mg/l). In order to statistically examine the non-monotonicity, nonlinear regression models were applied to the results. The results showed a triphasic dose-response relationship for activity and chemotaxis after exposure to fluoxetine, but not to sertraline or chlorpyrifos. Effects of fluoxetine already occurred at low concentrations in the range of ng/l while sertraline only showed effects at concentrations in the µg/l range, similar to chlorpyrifos. The different responses between fluoxetine and sertraline, both SSRIs, indicate that response patterns may not always be extrapolated from chemicals with the same primary mode of action. The effects of fluoxetine at low concentrations, in a non-monotonic manner, confirm the relevance of examining such responses at low concentrations.


Subject(s)
Chlorpyrifos , Fluoxetine , Animals , Fluoxetine/toxicity , Sertraline/toxicity , Caenorhabditis elegans , Acetylcholinesterase , Antidepressive Agents/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...