Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neth Heart J ; 26(5): 280, 2018 May.
Article in English | MEDLINE | ID: mdl-29520618
2.
Neth Heart J ; 26(5): 283-284, 2018 May.
Article in English | MEDLINE | ID: mdl-29520619
3.
Basic Res Cardiol ; 112(4): 46, 2017 07.
Article in English | MEDLINE | ID: mdl-28624975

ABSTRACT

In the chronic complete atrioventricular (AV) block dog (CAVB) model, both bradycardia and altered ventricular activation due to the uncontrolled idioventricular rhythm contribute to ventricular remodeling and the enhanced susceptibility to Torsade de Pointes (TdP) arrhythmias. We investigated the effect of permanent bradycardic right ventricular apex (RVA) pacing on mechanical and electrical remodeling and TdP. In 23 anesthetized dogs, serial experiments were performed at sinus rhythm (SR), acutely after AV block (AAVB) and 3 weeks of remodeling CAVB at a fixed pacing rate of 60/min. ECG, and left (LV) and right ventricular (RV) monophasic action potentials durations (MAPD) were recorded; activation time (AT) and activation recovery interval (ARI) were determined from ten distinct LV electrograms; interventricular mechanical delay (IVMD) and time-to-peak strain (TTP) of the LV septal and lateral wall (ΔTTP: lateral wall minus septal wall) were obtained echocardiographically. Dofetilide (25 µg/kg/5 min) was infused to study TdP inducibility. In baseline AAVB, in comparison to SR, RVA bradypacing acutely increased QT interval, LV, and RVMAPD. Echocardiographic IVMD and ΔTTP were initially increased, which was partially corrected after 3 weeks of RVA pacing (IVMD: 22 ± 13 vs. 42 ± 11 vs. 31 ± 6 ms; ΔTTP: -2 ± 47 vs. -114 ± 38 vs. -36 ± 22 ms). QT interval (362 ± 23 vs. 373 ± 29 ms), LVMAPD (245 ± 18 vs. 253 ± 22 ms), RVMAPD (226 ± 26 vs. 238 ± 31 ms), and mean LV-ARI (268 ± 5 vs. 267 ± 6 ms) were not significantly changed after 3 weeks of RVA pacing. During AAVB, dofetilide increased mean LV-ARI (381 ± 11 ms) with largest increases in the later activated basal areas (slope AT-ARI: +0.96). In contrast with acute RVA pacing, 3 week pacing increased TdP inducibility (0/13 vs. 11/21) and mean LV-ARI (484 ± 18 ms), while the slope of AT-ARI responded differently on dofetilide (-2.37), with larger APD increases in the early region. The latter was supported at the molecular level: reduced RNA expressions of three repolarization-related ion channel genes in early (KCNQ1, KCNH2, and KCNJ2) versus two in late regions (KNCQ1 and KCNJ2). In conclusion, bradycardic RVA pacing acutely induced LV intra- and interventricular mechanical dyssynchrony, which was partially reversed after 3 weeks of pacing (remodeling). The latter occurred without apparent baseline electrical effects. However, dofetilide clearly unmasked (region-specific) arrhythmic consequences of remodeling.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Bradycardia/physiopathology , Cardiac Pacing, Artificial/adverse effects , Heart Ventricles/physiopathology , Ventricular Remodeling/physiology , Animals , Dogs , Torsades de Pointes
4.
Br J Pharmacol ; 171(3): 714-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24490860

ABSTRACT

BACKGROUND AND PURPOSE: The electromechanical window (EMW), the interval between the end of the T-wave and the end of the left ventricular pressure (LVP) curve, has recently been proposed as a predictor of risk of Torsade de Pointes (TdP) in healthy animals, whereby a negative EMW (mechanical relaxation earlier than repolarization) after drug administration indicates an increased TdP risk. The aims of this study were to assess (i) the effect of the ventricular remodelling in the canine chronic, complete atrioventricular block (CAVB) model on EMW; (ii) the effect of the I(Kr) -blocker dofetilide on EMW; and (iii) the correlation of EMW with TdP inducibility. EXPERIMENTAL APPROACH: Our 11 year database of experiments of CAVB in dogs under general anaesthesia was reviewed and experiments included if ECG and LVP were recorded simultaneously at spontaneous rhythm. In total, 89 experiments in 44 dogs were appropriate and were analysed. KEY RESULTS: During normally conducted sinus rhythm or acute atrioventricular block, EMW was positive. During CAVB, EMW was decreased to negative values. Dofetilide further reduced EMW before inducing repetitive TdP in 82% of the experiments. However, subclassification into inducible and non-inducible dogs revealed no difference in EMW. Analysis of the components of EMW revealed that the observed changes in EMW were solely caused by QT prolongation. CONCLUSIONS AND IMPLICATIONS: In the canine CAVB model, ventricular remodelling and I(Kr) block by dofetilide are associated with negative EMW values, but this reflects QT prolongation, and implies that the EMW lacks specificity to predict dofetilide-induced TdP.


Subject(s)
Arrhythmias, Cardiac/etiology , Atrial Remodeling , Atrioventricular Block/physiopathology , Disease Models, Animal , Heart/physiopathology , Torsades de Pointes/physiopathology , Animals , Anti-Arrhythmia Agents , Arrhythmias, Cardiac/prevention & control , Atrial Remodeling/drug effects , Databases, Factual , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Delayed Rectifier Potassium Channels/metabolism , Disease Susceptibility , Dogs , Early Diagnosis , Electrocardiography/drug effects , Female , Heart/drug effects , Heart Rate/drug effects , Male , Phenethylamines , Potassium Channel Blockers , Reproducibility of Results , Sulfonamides , Torsades de Pointes/diagnosis , Torsades de Pointes/etiology
5.
Br J Pharmacol ; 165(2): 467-78, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21718297

ABSTRACT

BACKGROUND AND PURPOSE: Drug development requires the testing of new chemical entities for adverse effects. For cardiac safety screening, improved assays are urgently needed. Isolated adult cardiomyocytes (CM) and human embryonic stem cell-derived cardiomyocytes (hESC-CM) could be used to identify pro-arrhythmic compounds. In the present study, five assays were employed to investigate their sensitivity and specificity for evaluating the pro-arrhythmic properties of I(Kr) blockers, using moxifloxacin (safe compound) and dofetilide or E-4031 (unsafe compounds). EXPERIMENTAL APPROACH: Assays included the anaesthetized remodelled chronic complete AV block (CAVB) dog, the anaesthetized methoxamine-sensitized unremodelled rabbit, multi-cellular hESC-CM clusters, isolated CM obtained from CAVB dogs and isolated CM obtained from the normal rabbit. Arrhythmic outcome was defined as Torsade de Pointes (TdP) in the animal models and early afterdepolarizations (EADs) in the cell models. KEY RESULTS: At clinically relevant concentrations (5-12 µM), moxifloxacin was free of pro-arrhythmic properties in all assays with the exception of the isolated CM, in which 10 µM induced EADs in 35% of the CAVB CM and in 23% of the rabbit CM. At supra-therapeutic concentrations (≥100 µM), moxifloxacin was pro-arrhythmic in the isolated rabbit CM (33%), in the hESC-CM clusters (18%), and in the methoxamine rabbit (17%). Dofetilide and E-4031 induced EADs or TdP in all assays (50-83%), and the induction correlated with a significant increase in beat-to-beat variability of repolarization. CONCLUSION AND IMPLICATIONS: Isolated cardiomyocytes lack specificity to discriminate between TdP liability of the I(Kr) blocking drugs moxifloxacin and dofetilide or E4031.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Aza Compounds/pharmacology , Myocytes, Cardiac/drug effects , Phenethylamines/pharmacology , Piperidines/pharmacology , Potassium Channel Blockers/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Sulfonamides/pharmacology , Torsades de Pointes/chemically induced , Action Potentials/drug effects , Animals , Cell Line , Disease Models, Animal , Dogs , Embryonic Stem Cells/cytology , Female , Fluoroquinolones , Heart/drug effects , Heart/physiopathology , Heart Block/physiopathology , Humans , Methoxamine , Moxifloxacin , Myocytes, Cardiac/physiology , Rabbits , Torsades de Pointes/physiopathology , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...