Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 182(Pt 3): 217-24, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8801359

ABSTRACT

A confocal scanning light microscope coupled to the Daresbury Synchrotron Radiation Source is described. The broad spectrum of synchrotron radiation and the application of achromatic quartz/CaF2 optics allows for confocal imaging over the wavelength range 200-700 nm. This includes UV light, which is particularly suitable for high-resolution imaging. The results of test measurements using 290-nm light indicate that a lateral resolution better than 100 nm is obtained. An additional advantage of the white synchrotron radiation is that the excitation wavelength can be chosen to match the absorption band of any fluorescent dye. The availability of UV light for confocal microscopy enables studies of naturally occurring fluorophores. The potential applications of the microscope are illustrated by the real-time imaging of hormone traffic using the naturally occurring oestrogen coumestrol. (The IUPAC name for coumestrol is 3,9-dihydroxy-6H-benzofurol[3,2-c][1]benzo-pyran-6-one (Chem. Abstr. Reg. No. 479-13-0). The trivial name will be used throughout this paper.


Subject(s)
Coumestrol/metabolism , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Testis/metabolism , Animals , Biological Transport , Male , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Synchrotrons , Ultraviolet Rays
2.
J Biomol Struct Dyn ; 7(4): 943-57, 1990 Feb.
Article in English | MEDLINE | ID: mdl-2310524

ABSTRACT

The rotation diffusion coefficient of a complex of GP32, the single stranded DNA binding protein of the bacteriophage T4, with a single stranded DNA fragment with about 270 bases was determined to obtain further information on the flexibility of this particle. The rotation diffusion of these molecules is used as a sensitive measure of the flexibility of different DNA protein complexes. Using the theory of Hagerman and Zimm (Biopolymers 20, 1481 (1981)) and assuming a bending persistence length of about 35 nanometer it can be shown that the axial increment for GP32 complexes with single stranded DNA is close to 0.5 nm per base. The value for the bending persistence length is in agreement with values found for much larger DNA protein complexes using light scattering experiments. This value for the persistence length also implies that the complex is thin. The radius is estimated to be around 1.7 nm, which shows a moderate degree of hydration. With this set of parameters we can describe all the hydrodynamic experiments on GP32 complexes from 76 to more than 7000 bases obtained using electric birefringence, quasi-elastic light scattering and sedimentation experiments performed in our group over the last few years.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Birefringence , Electricity , Models, Chemical , Nucleic Acid Conformation , Nucleosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...