Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 140(1): 48-55, 1984 Jul.
Article in English | MEDLINE | ID: mdl-6486415

ABSTRACT

An enzyme-linked lectin binding assay (ELBA) has been developed for the detection of soluble lectin binding substances (receptors) and the determination of their relative affinity for the lectin. The assay is based on competitive binding to enzyme-labeled lectin of a known lectin receptor, bound to a solid phase, and unknown sample receptors. In this paper the assay is exemplified with the mannose/glucose-specific pea lectin, with the glycoprotein ovalbumin as its receptor, and with horseradish peroxidase (EC 1.11.1.7) as the enzyme used for labeling. Also a method was developed for the preparation of peroxidase-labeled lectin. Labeling was started by mixing equimolar amounts of lectin and periodate-oxidized enzyme at pH 4.5 at a final concentration of 10(-4)M, after which conjugation was started by raising the pH to 9.5. This resulted in complete conjugation, after which the product could be diluted 50-500 times for application in ELBA. For the ELBA ovalbumin was adsorbed onto polystyrene microtiter plates. Sample receptors, added together with the enzyme-labeled lectin, inhibited binding of the latter to ovalbumin. Bound enzyme activity was colorimetrically determined after addition of o-phenylenediamine. Relative lectin affinity (KL) was expressed as (formula; see text) in which [X]50% is the concentration of sample receptor necessary to inhibit 50% of the binding of a certain amount of lectin, and [M]50% is the concentration of D-mannose necessary to inhibit 50% binding of the same amount of lectin. With this technique lectin affinity of both monovalent and polyvalent lectin binding substances can be estimated: low KL values mean high lectin affinity.


Subject(s)
Horseradish Peroxidase , Peroxidases , Receptors, Mitogen/analysis , Binding, Competitive , Chemical Phenomena , Chemistry , Fabaceae , Hydrogen-Ion Concentration , Plants, Medicinal , Solubility
2.
Planta ; 161(4): 302-7, 1984 Jun.
Article in English | MEDLINE | ID: mdl-24253718

ABSTRACT

Root lectins are believed to participate in the recognition between Rhizobium and its leguminous host plant. Among other factors, testing this hypothesis is difficult because of the very low amounts in which root lectins are produced. A double-antibody-sandwich enzyme-linked immunoassay, was used to determine nanogram quantities of pea lectin in root slime and salt extracts of root cell-wall material when pea seedlings were 4 and 7 d old. In addition, a critical NO 3 (-) concentration (20 mM) which inhibited nodulation was found, and the lectin present in root slime and salt extracts of root cell walls of 4- and 7-d-old peas supplied with 20 mM NO 3 (-) was comparatively determined. With the enzyme-linked immunoassay, lectin quantities ranging between 20 and 100 nanograms could be determined. The assay is not affected by monomeric mannose and glucose (pealectin haptens). The slime of the 4-d-old roots contained more lectin than the slime of the 7-d-old roots. Salt-extractable, cell-wall-associated lectin accumulated in the older roots. Nitrate affected slime and cell-wall production, and the extractability of cell-wall material in both age groups. The presence of NO 3 (-) increased lectin in the slime, most notably in the younger roots; the relative amount of lectin in the slime was almost doubled. The cell-wall-associated, salt-extractable lectin decreased two- to threefold compared with the control group.

SELECTION OF CITATIONS
SEARCH DETAIL
...