Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 5(2): 160-166, 2019 02.
Article in English | MEDLINE | ID: mdl-30737509

ABSTRACT

Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division1-3. In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical-basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Plant Cells/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Bacterial Proteins/genetics , Cell Polarity , Gene Expression Regulation, Plant , Luminescent Proteins/genetics , Multigene Family , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Domains , Seeds/genetics
2.
New Phytol ; 219(4): 1216-1223, 2018 09.
Article in English | MEDLINE | ID: mdl-29949662

ABSTRACT

Targeted cellular auxin distribution is required for morphogenesis and adaptive responses of plant organs. In Arabidopsis thaliana (Arabidopsis), this involves the prototypical auxin influx facilitator AUX1 and its LIKE-AUX1 (LAX) homologs, which act partially redundantly in various developmental processes. Interestingly, AUX1 and its homologs are not strictly essential for the Arabidopsis life cycle. Indeed, aux1 lax1 lax2 lax3 quadruple knock-outs are mostly viable and fertile, and strong phenotypes are only observed at low penetrance. Here we investigated the Brachypodium distachyon (Brachypodium) AUX1 homolog BdAUX1 by genetic, cell biological and physiological analyses. We report that BdAUX1 is essential for Brachypodium development. Bdaux1 loss-of-function mutants are dwarfs with aberrant flower development, and consequently infertile. Moreover, they display a counter-intuitive root phenotype. Although Bdaux1 roots are agravitropic as expected, in contrast to Arabidopsis aux1 mutants they are dramatically longer than wild type roots because of exaggerated cell elongation. Interestingly, this correlates with higher free auxin content in Bdaux1 roots. Consistently, their cell wall characteristics and transcriptome signature largely phenocopy other Brachypodium mutants with increased root auxin content. Our results imply fundamentally different wiring of auxin transport in Brachypodium roots and reveal an essential role of BdAUX1 in a broad spectrum of developmental processes, suggesting a central role for AUX1 in pooideae.


Subject(s)
Brachypodium/growth & development , Brachypodium/metabolism , Plant Development , Plant Proteins/metabolism , Brachypodium/genetics , Gene Expression Regulation, Plant , Gravitropism/physiology , Mutation/genetics , Phenotype , Plant Proteins/genetics , Plant Roots/anatomy & histology , Plant Shoots/anatomy & histology
3.
Plant Cell ; 28(5): 1009-24, 2016 05.
Article in English | MEDLINE | ID: mdl-27169463

ABSTRACT

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.


Subject(s)
Brachypodium/metabolism , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Cell Wall/metabolism , Galactans/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...