Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316667

ABSTRACT

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Subject(s)
CD4-Positive T-Lymphocytes , Cell Death , Immunotherapy , Inflammation , Neoplasms , Tumor Microenvironment , Humans , Antigen-Presenting Cells/immunology , CD11c Antigen/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Death/immunology , Histocompatibility Antigens Class II/immunology , Immunity, Innate , Inflammation/immunology , Interferons/immunology , Major Histocompatibility Complex/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Tumor Microenvironment/immunology , Immunotherapy/methods , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Th1 Cells/cytology , Th1 Cells/immunology
2.
Int J Cancer ; 150(1): 142-151, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34528710

ABSTRACT

Most melanoma-associated deaths result from the early development of metastasis. Toll-like receptor 4 (TLR4) expression on nontumor cells is well known to contribute to tumor development and metastatic progression. The role of TLR4 expression on tumor cells however is less well understood. Here we describe TLR4 as a driver of tumor progression and metastatic spread of melanoma cells by employing a transplantable mouse melanoma model. HCmel12 melanoma cells lacking functional TLR4 showed increased sensitivity to tumor necrosis factor α induced cell killing in vitro compared to cells with intact TLR4. Interestingly, TLR4 knockout melanoma cells also showed impaired migratory capacity in vitro and a significantly reduced ability to metastasize to the lungs after subcutaneous transplantation in vivo. Finally, we demonstrate that activation of TLR4 also promotes migration in a subset of human melanoma cell lines. Our work describes TLR4 as an important mediator of melanoma migration and metastasis and provides a rationale for therapeutic inhibition of TLR4 in melanoma.


Subject(s)
Cell Movement , Lung Neoplasms/secondary , Melanoma/pathology , Toll-Like Receptor 4/metabolism , Animals , Apoptosis , CRISPR-Cas Systems , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...