Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Pract ; 30(4): 348-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244859

ABSTRACT

OBJECTIVE: We determined (1) if 11-oxygenated androgens better identify polycystic ovary syndrome (PCOS) diagnosis in women with obesity compared to total or free testosterone (T) and free androgen index; (2) how biochemical hyperandrogenism and metabolic factors cluster in a cohort of women with infertility and obesity. METHODS: Women with obesity and PCOS comprised the study group (N = 132). Ovulatory women with obesity and idiopathic, tubal or male factor infertility were the control group (N = 83). Steroid hormones were measured by means of liquid chromatography tandem mass spectrometry. Receiver operating characteristic curves and principal component analysis were used. RESULTS: Women with obesity and PCOS had higher 11-ketotestosterone (11 KT) (1.22 nmol/L [0.84; 1.65] vs 1.05 [0.78; 1.35], P = .04) compared to controls, but not 11ß-hydroxyandrostenedione 4.30 [2.87; 5.92] vs 4.06 [3.22; 5.73], P = .44). 11-ketotestosterone (area under the curve: 0.59) did not better discriminate PCOS in women with obesity compared to: total T (0.84), free T (0.91), and free androgen index (0.85). We identified 4 principal components (PCs) in the PCOS group (72.1% explained variance): (1) insulin resistance status; (2) blood pressure; (3) obesity; (4) androgen status and 4 PCs in the control group (68.7% explained variance) with variables representing metabolism being dispersed in component 2, 3, and 4. CONCLUSIONS: Eleven-oxygenated androgens do not aid in the diagnosis of PCOS in women with obesity. Insulin resistance is the strongest PC in the PCOS group. There is no major dominant characteristic that defines obese non-PCOS women.


Subject(s)
Hyperandrogenism , Infertility , Insulin Resistance , Polycystic Ovary Syndrome , Female , Male , Humans , Polycystic Ovary Syndrome/complications , Hyperandrogenism/diagnosis , Hyperandrogenism/metabolism , Androgens , Testosterone , Obesity/complications , Obesity/metabolism , Cluster Analysis
2.
Diabetes Care ; 44(12): 2683-2690, 2021 12.
Article in English | MEDLINE | ID: mdl-34610923

ABSTRACT

OBJECTIVE: Posttransplantation diabetes mellitus (PTDM) effects up to 30% of all kidney transplant recipients (KTR). Recent studies in mice found that sufficient androgen levels are necessary for ß-cell health and adequate insulin secretion. This raises the question whether a similar relationship might be present in KTR. Hence, we hypothesized that dihydrotestosterone and testosterone are associated with the development of PTDM in male KTR. RESEARCH DESIGN AND METHODS: We conducted a post hoc analyses of a prospective single-center cohort study including adult male KTR with a functioning graft ≥1 year posttransplantation. Androgen levels were assessed by liquid chromatography-tandem mass spectrometry. Development of PTDM was defined according to the American Diabetes Association's criteria. RESULTS: We included 243 male KTR (aged 51 ± 14 years), with a median dihydrotestosterone 0.9 (0.7-1.3) nmol/L and testosterone of 12.1 (9.4-15.8) nmol/L. During 5.3 (3.7-5.8) years of follow-up, 28 KTR (11.5%) developed PTDM. A clear association was observed, as 15 (19%), 10 (12%), and 3 (4%) male KTR developed PTDM in the respective tertiles of dihydrotestosterone (P = 0.008). In Cox regression analyses, both dihydrotestosterone and testosterone as continuous variables were inversely associated with the risk to development PTDM, independent of glucose and HbA1c (hazard ratio [HR] 0.31 [95% CI 0.16-0.59], P < 0.001; and HR 0.32 [95% CI 0.15-0.68], P = 0.003, respectively). CONCLUSIONS: Our results suggest that low androgen levels are a novel potential modifiable risk factor for the development of PTDM in male KTR.


Subject(s)
Diabetes Mellitus , Kidney Transplantation , Adult , Aged , Androgens , Cohort Studies , Diabetes Mellitus/epidemiology , Diabetes Mellitus/etiology , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Postoperative Complications , Prospective Studies , Risk Factors
3.
Clin Chem Lab Med ; 59(1): 187-195, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32673281

ABSTRACT

Objectives: Regulators of circadian rhythm, including melatonin, influence fundamental biological processes. Measuring the melatonin metabolite 6-sulfatoxymelatonin in urine can estimate melatonin production. 6-sulfatoxymelatonin is mainly analyzed by immunoassays, but these methods are hampered by cross-reactivity and poor reproducibility when used to analyze small molecules. Therefore, we validated a high-throughput liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify 6-sulfatoxymelatonin in urine. We evaluated age-dependent 24-h excretion of 6-sulfatoxymelatonin into urine and the biological variation of urinary excretion in healthy individuals. Methods: The online solid phase extraction method combined with LC-MS/MS was validated according to international guidelines, and used to measure the excretion of 6-sulfatoxymelatonin into urine of 240 healthy individuals. Biological variation of 6-sulfatoxymelatonin excretion was examined in 10 healthy individuals. Results: Urinary 6-sulfatoxymelatonin results were well within the validation criteria (interassay coefficient of variation: <5.4%, quantification limit: 0.2 nmol/L). There was an age-related decrease in 6-sulfatoxymelatonin excretion into 24-h urine [F(5, 234)=13.9; p<0.001]. Within-subject variation of 6-sulfatoxymelatonin was 39.2% in day urine, 15.1% in night urine, and 12.2% in 24-h urine. Between-subject variation was 39.1% in day urine, 37.9% in night urine, and 36.8% in 24-h urine. Conclusions: This MS-based method enables straightforward, reproducible, and sensitive quantification of 6-sulfatoxymelatonin in urine. Urinary 6-sulfatoxymelatonin levels decreased with age. Biological variation of 6-sulfatoxymelatonin excretion into urine was high between subjects and lower within subjects, indicating that repeated measurements of 6-sulfatoxymelatonin in 24-h urine are needed in future studies.


Subject(s)
Chromatography, Liquid/methods , Melatonin/analogs & derivatives , Tandem Mass Spectrometry/methods , Adult , Age Factors , Aged , Aged, 80 and over , Biological Variation, Individual , Female , Humans , Male , Melatonin/urine , Middle Aged , Reproducibility of Results , Time Factors , Young Adult
4.
J Clin Med ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041099

ABSTRACT

N1-methylnicotinamide (N1-MN) and N1-methyl-2-pyridone-5-carboxamide (2Py) are successive end products of NAD+ catabolism. N1-MN excretion in 24-h urine is the established biomarker of niacin nutritional status, and recently shown to be reduced in renal transplant recipients (RTR). However, it is unclear whether 2Py excretion is increased in this population, and, if so, whether a shift in excretion of N1-MN to 2Py can be attributed to kidney function. Hence, we assessed the 24-h urinary excretion of 2Py and N1-MN in RTR and kidney donors before and after kidney donation, and investigated associations of the urinary ratio of 2Py to N1-MN (2Py/N1-MN) with kidney function, and independent determinants of urinary 2Py/N1-MN in RTR. The urinary excretion of 2Py and N1-MN was measured in a cross-sectional cohort of 660 RTR and 275 healthy kidney donors with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Linear regression analyses were used to investigate associations and determinants of urinary 2Py/N1-MN. Median 2Py excretion was 178.1 (130.3-242.8) µmol/day in RTR, compared to 155.6 (119.6-217.6) µmol/day in kidney donors (p < 0.001). In kidney donors, urinary 2Py/N1-MN increased significantly after kidney donation (4.0 ± 1.4 to 5.2 ± 1.5, respectively; p < 0.001). Smoking, alcohol consumption, diabetes, high-density lipoprotein (HDL), high-sensitivity C-reactive protein (hs-CRP) and estimated glomerular filtration rate (eGFR) were identified as independent determinants of urinary 2Py/N1-MN in RTR. In conclusion, the 24-h urinary excretion of 2Py is higher in RTR than in kidney donors, and urinary 2Py/N1-MN increases after kidney donation. As our data furthermore reveal strong associations of urinary 2Py/N1-MN with kidney function, interpretation of both N1-MN and 2Py excretion may be recommended for assessment of niacin nutritional status in conditions of impaired kidney function.

5.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Article in English | MEDLINE | ID: mdl-31436048

ABSTRACT

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Subject(s)
Activins/metabolism , Autocrine Communication/physiology , Autophagy/genetics , Cachexia/genetics , Interleukin-6/metabolism , Ovarian Neoplasms/genetics , Animals , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/pathology , Signal Transduction
6.
J Clin Med ; 8(11)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726722

ABSTRACT

Renal transplant recipients (RTR) commonly suffer from vitamin B6 deficiency and its functional consequences add to an association with poor long-term outcome. It is unknown whether niacin status is affected in RTR and, if so, whether this affects clinical outcomes, as vitamin B6 is a cofactor in nicotinamide biosynthesis. We compared 24-h urinary excretion of N1-methylnicotinamide (N1-MN) as a biomarker of niacin status in RTR with that in healthy controls, in relation to dietary intake of tryptophan and niacin as well as vitamin B6 status, and investigated whether niacin status is associated with the risk of premature all-cause mortality in RTR. In a prospective cohort of 660 stable RTR with a median follow-up of 5.4 (4.7-6.1) years and 275 healthy kidney donors, 24-h urinary excretion of N1-MN was measured with liquid chromatography-tandem mass spectrometry LC-MS/MS. Dietary intake was assessed by food frequency questionnaires. Prospective associations of N1-MN excretion with mortality were investigated by Cox regression analyses. Median N1-MN excretion was 22.0 (15.8-31.8) µmol/day in RTR, compared to 41.1 (31.6-57.2) µmol/day in healthy kidney donors (p < 0.001). This difference was independent of dietary intake of tryptophan (1059 ± 271 and 1089 ± 308 mg/day; p = 0.19), niacin (17.9 ± 5.2 and 19.2 ± 6.2 mg/day; p < 0.001), plasma vitamin B6 (29.0 (17.5-49.5), and 42.0 (29.8-60.3) nmol/L; p < 0.001), respectively. N1-MN excretion was inversely associated with the risk of all-cause mortality in RTR (HR 0.57; 95% CI 0.45-0.71; p < 0.001), independent of potential confounders. RTR excrete less N1-MN in 24-h urine than healthy controls, and our data suggest that this difference cannot be attributed to lower dietary intake of tryptophan and niacin, nor vitamin B6 status. Importantly, lower 24-h urinary excretion of N1-MN is independently associated with a higher risk of premature all-cause mortality in RTR.

7.
Clin Biochem ; 68: 15-23, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30922617

ABSTRACT

BACKGROUND: With liquid chromatography-tandem mass spectrometry (LC-MS/MS) increasingly being used for the quantification of steroid hormones, there is a need for studies that re-establish reference intervals and biological variation in well-defined cohorts. METHODS: A plasma steroid hormone profiling method using LC-MS/MS for quantification of progesterone, 17-hydroxyprogesterone, androstenedione, testosterone and dihydrotestosterone was developed and validated. For reference interval assessment, 280 well-characterized healthy subjects from the LifeLines cohort were selected, including 40 women using oral contraceptive pills (OCP). The biological variation was examined in 30 healthy individuals. Samples were collected over a period of 4 months with 4 week intervals. RESULTS: The developed method proved to be robust and sensitive. The reference interval levels in men are higher, whereas in women the levels tend to decrease with increasing age. In addition, women using OCP had lower levels of 17-OH-progesterone and androstenedione. The biological variation is generally higher in women compared to men, especially with regard to the inter-individual variation. CONCLUSIONS: The gender-specific determination of the reference intervals, together with the observation that the biological variation demonstrated a high degree of variation, allows interpretation of data on individual and group level for improved biochemical characterization of patients in clinical practice.


Subject(s)
Chromatography, Liquid/methods , Steroids/blood , Tandem Mass Spectrometry/methods , 17-alpha-Hydroxyprogesterone/blood , Androstenedione/blood , Female , Humans , Male , Progesterone/blood , Reference Values , Testosterone/blood
8.
Am J Clin Nutr ; 106(6): 1366-1374, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28978540

ABSTRACT

Background: Low plasma concentrations of pyridoxal 5'-phosphate (PLP) are common in renal transplant recipients (RTRs) and confer increased risk of long-term mortality. To our knowledge, it is not known whether low plasma PLP concentrations have functional (i.e., intracellular) consequences and, if so, whether such consequences are associated with increased risk of mortality.Objectives: We assessed the association of plasma PLP with functional vitamin B-6 status and explored the potential association of functional vitamin B-6 status with long-term mortality in RTRs.Design: In a longitudinal cohort of 678 stable RTRs with a median follow-up of 5.3 y (IQR: 4.8-6.1 y) and 297 healthy controls, PLP, plasma 3-hydroxykynurenine (3-HK), and xanthurenic acid (XA) were analyzed via validated assays. PLP was used as direct biomarker for vitamin B-6 status, and the 3-HK:XA ratio was used as functional biomarker of vitamin B-6 status with a higher ratio reflecting worse functional vitamin B-6 status.Results: Median PLP, 3-HK, and XA concentrations were 41 nmol/L (IQR: 29-60 nmol/L), 40.1 nmol/L (IQR: 33.0-48.0 nmol/L), and 19.1 nmol/L (IQR: 14.5-24.9 nmol/L), respectively, in healthy controls compared with 29 nmol/L (IQR: 17-50 nmol/L), 61.5 nmol/L (IQR: 45.6-86.5 nmol/L), and 25.5 nmol/L (IQR: 17.2-40.0 nmol/L), respectively, in RTRs (all P < 0.001). RTRs had a higher median 3-HK:XA ratio (2.38; IQR: 1.68-3.49) than did healthy controls (2.13; IQR: 1.63-2.71) (P < 0.05). In RTRs, the 3-HK:XA ratio was inversely associated with plasma PLP (ß = -0.21, P < 0.001). Moreover, a higher 3-HK:XA ratio was independently associated with increased risk of all-cause mortality (HR per SD increment: 1.30; 95% CI: 1.13, 1.49), cancer mortality (HR per SD increment: 1.47; 95% CI: 1.12, 1.95), and infectious disease mortality (HR per SD increment: 1.50; 95% CI: 1.21, 1.86) in RTRs.Conclusions: Vitamin B-6-deficient RTRs have a worse functional vitamin B-6 status than do healthy controls and vitamin B-6-sufficient RTRs. Worse functional vitamin B-6 status in RTRs is independently associated with an increased risk of mortality particularly because of cancer and infectious disease. This trial was registered at clinicaltrials.gov as NCT02811835.


Subject(s)
Infections/mortality , Kidney Transplantation/adverse effects , Kynurenine/analogs & derivatives , Neoplasms/mortality , Pyridoxal Phosphate/blood , Vitamin B 6 Deficiency/complications , Xanthurenates/blood , Adult , Aged , Biomarkers/blood , Cause of Death , Cohort Studies , Female , Humans , Kidney/surgery , Kidney Diseases/surgery , Kynurenine/blood , Male , Middle Aged , Nutritional Status , Risk Factors , Vitamin B 6/blood , Vitamin B 6 Deficiency/blood , Vitamin B Complex/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...