Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Dosim ; 44(2): 183-189, 2019.
Article in English | MEDLINE | ID: mdl-30135024

ABSTRACT

We quantify the robustness of a proposed volumetric-modulated arc therapy (VMAT) planning and treatment technique for radiotherapy of breast cancer involving the axillary nodes. The proposed VMAT technique is expected to be more robust to breast shape changes and setup errors, yet maintain the improved conformity of VMAT compared to our current standard technique that uses tangential intensity-modulated radiation therapy (IMRT) fields. Treatment plans were created for 10 patients. To account for anatomical variation, planning was carried out on a computed tomography (CT) with an expanded breast, followed by segment weight optimization (SWO) on the original planning CT (VMAT + SWO). For comparison purposes, tangential field IMRT plans and conventional VMAT (cVMAT) plans were also created. Anatomical changes (expansion and contraction of the breast) and setup errors were simulated to quantify changes in target coverage, target maximum, and organ-at-risk (OAR) doses. Finally, robustness was assessed by calculating the actual delivered dose for each fraction using cone-beam CT images acquired during treatment. Target coverage of VMAT + SWO was shown to be significantly more robust compared to cVMAT technique, against anatomical variations and setup errors. Sensitivity of the clinical target volume (CTV) V95% is -5%/cm of expansion for the proposed technique, which is identical to the IMRT technique and much lower than the -22%/cm for cVMAT. Results are similar for setup errors. OAR doses are mostly insensitive to anatomical variations and the OAR sensitivity to setup variations does not depend on the planning technique. The results are confirmed by dose distributions recalculated on cone-beam CT, showing that for VMAT + SWO the CTV V95% remains within 2.5% of the planned value, whereas it deviates by up to 7% for cVMAT. A practical VMAT planning technique is developed, which is robust to daily anatomical variations and setup errors.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Lymphatic Metastasis/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Axilla , Breast Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography , Female , Humans , Lymph Nodes , Lymphatic Metastasis/diagnostic imaging , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...