Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Cancer ; 143(7): 1764-1773, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29672836

ABSTRACT

Urachal cancer (UrC) is a rare but aggressive malignancy often diagnosed in advanced stages requiring systemic treatment. Although cytotoxic chemotherapy is of limited effectiveness, prospective clinical studies can hardly be conducted. Targeted therapeutic treatment approaches and potentially immunotherapy based on a biological rationale may provide an alternative strategy. We therefore subjected 70 urachal adenocarcinomas to targeted next-generation sequencing, conducted in situ and immunohistochemical analyses (including PD-L1 and DNA mismatch repair proteins [MMR]) and evaluated the microsatellite instability (MSI) status. The analytical findings were correlated with clinicopathological and outcome data and Kaplan-Meier and univariable/multivariable Cox regression analyses were performed. The patients had a mean age of 50 years, 66% were male and a 5-year overall survival (OS) of 58% and recurrence-free survival (RFS) of 45% was detected. Sequence variations were observed in TP53 (66%), KRAS (21%), BRAF (4%), PIK3CA (4%), FGFR1 (1%), MET (1%), NRAS (1%), and PDGFRA (1%). Gene amplifications were found in EGFR (5%), ERBB2 (2%), and MET (2%). We detected no evidence of MMR-deficiency (MMR-d)/MSI-high (MSI-h), whereas 10 of 63 cases (16%) expressed PD-L1. Therefore, anti-PD-1/PD-L1 immunotherapy approaches might be tested in UrC. Importantly, we found aberrations in intracellular signal transduction pathways (RAS/RAF/PI3K) in 31% of UrCs with potential implications for anti-EGFR therapy. Less frequent potentially actionable genetic alterations were additionally detected in ERBB2 (HER2), MET, FGFR1, and PDGFRA. The molecular profile strengthens the notion that UrC is a distinct entity on the genomic level with closer resemblance to colorectal than to bladder cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Adult , Aged , Carcinoma, Signet Ring Cell/genetics , Carcinoma, Signet Ring Cell/pathology , Female , Follow-Up Studies , Gene Amplification , Gene Expression Profiling , Humans , Male , Middle Aged , Mutation , Prognosis , Young Adult
2.
Nat Commun ; 9(1): 175, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330365

ABSTRACT

Extracellular vesicles (EVs) carry RNA, DNA, proteins, and lipids. Specifically, tumor-derived EVs have the potential to be utilized as disease-specific biomarkers. However, a lack of methods to isolate tumor-specific EVs has limited their use in clinical settings. Here we report a sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within 3 h. Using the EVHB-Chip, we achieve 94% tumor-EV specificity, a limit of detection of 100 EVs per µL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. Our approach allows for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, we can detect the mutant EGFRvIII mRNA. Moreover, using next-generation RNA sequencing, we identify genes specific to GBM as well as transcripts that are hallmarks for the four genetic subtypes of the disease.


Subject(s)
Brain Neoplasms/metabolism , Extracellular Vesicles/chemistry , Glioblastoma/metabolism , Microfluidics/methods , Biological Transport , Brain Neoplasms/chemistry , Brain Neoplasms/genetics , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , Glioblastoma/chemistry , Glioblastoma/genetics , Humans , Microfluidics/instrumentation , RNA/genetics , RNA/metabolism
3.
Neuro Oncol ; 18(1): 58-69, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26433199

ABSTRACT

BACKGROUND: To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. METHODS: Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. RESULTS: Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. CONCLUSIONS: Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs.


Subject(s)
Brain Neoplasms/metabolism , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Animals , Brain/metabolism , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Tumor Cells, Cultured
4.
J Neurosci ; 34(46): 15482-9, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25392515

ABSTRACT

Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimer's and Parkinson's diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.


Subject(s)
Brain/cytology , Brain/physiology , Exosomes/physiology , Animals , Brain/physiopathology , Cilia/physiology , Humans , Neoplasm Invasiveness/physiopathology , Nerve Regeneration/physiology , Neurodegenerative Diseases/physiopathology
5.
Semin Cancer Biol ; 28: 14-23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24783980

ABSTRACT

Different types of RNAs identified thus far represent a diverse group of macromolecules that are involved in the regulation of different biological processes. RNA is generally thought to be localized primarily in the nucleus and cytoplasm; however, some types of RNA have been detected in the extracellular milieu. These extracellular RNA (exRNA) molecules are protected from degradation and it is now widely accepted that extracellular vesicles and ribonucleoprotein particles serve as transport vehicles for exRNA among cells. The functional consequence of this transfer of genetic information probably encompasses a broad range of normal developmental and physiologic processes in many organisms. This review will focus on the role of exRNA communication in cancer. We will focus on different types of RNA species identified and characterized within tumor-derived extracellular vesicles. Further, we will describe the role of exRNAs in cancer progression, as well as their potential for use as diagnostic biomarkers and therapeutic tools for monitoring and treating cancer, respectively.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , RNA/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Communication/physiology , Disease Progression
6.
Biochem J ; 460(1): 25-34, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24762137

ABSTRACT

Growth factors inactivate the FOXO (forkhead box O) transcription factors through PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B). By comparing microarray data from multiple model systems, we identified HBP1 (high-mobility group-box protein 1) as a novel downstream target of this pathway. HBP1 mRNA was down-regulated by PDGF (platelet-derived growth factor), FGF (fibroblast growth factor), PI3K and PKB, whereas it was up-regulated by FOXO factors. This observation was confirmed in human and murine fibroblasts as well as in cell lines derived from leukaemia, breast adenocarcinoma and colon carcinoma. Bioinformatics analysis led to the identification of a conserved consensus FOXO-binding site in the HBP1 promoter. By luciferase activity assay and ChIP, we demonstrated that FOXO bound to this site and regulated the HBP1 promoter activity in a PI3K-dependent manner. Silencing of HBP1 by shRNA increased the proliferation of human fibroblasts in response to growth factors, suggesting that HBP1 limits cell growth. Finally, by analysing a transcriptomics dataset from The Cancer Genome Atlas, we observed that HBP1 expression was lower in breast tumours that had lost FOXO expression. In conclusion, HBP1 is a novel target of the PI3K/FOXO pathway and controls cell proliferation in response to growth factors.


Subject(s)
Down-Regulation/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , High Mobility Group Proteins/antagonists & inhibitors , High Mobility Group Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Phosphatidylinositol 3-Kinase/genetics , Proto-Oncogene Proteins c-akt/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Animals , CHO Cells , Cells, Cultured , Conserved Sequence , Cricetinae , Cricetulus , Fibroblasts/drug effects , Fibroblasts/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/biosynthesis , HEK293 Cells , High Mobility Group Proteins/biosynthesis , Humans , MCF-7 Cells , Male , Mice , NIH 3T3 Cells , Phosphatidylinositol 3-Kinase/biosynthesis , Promoter Regions, Genetic , Protein Binding/genetics , Proto-Oncogene Proteins c-akt/biosynthesis , Repressor Proteins/biosynthesis , Signal Transduction/genetics
7.
Autophagy ; 8(12): 1862-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22996802

ABSTRACT

Activation of the PI3K-AKT1-FOXO module by growth factors increases survival and stress resistance. We identified the gene encoding glutamine synthetase (GLUL, glutamate-ammonia ligase) as a novel transcriptional target of this signaling cascade. Growth factor removal increases glutamine synthetase expression and activity through activation of FOXO transcription factors. Surprisingly, increased levels of glutamine synthetase inhibit MTOR signaling by blocking its lysosomal translocation. Furthermore, FOXO activation induces autophagosome formation and autophagic flux in a glutamine synthetase-dependent manner. This may be important for maintaining cell survival during conditions of growth factor and nutrient deprivation since inhibition of autophagy induces cell death. These studies reveal that glutamine metabolism can play an important regulatory role in the regulation of autophagy by growth factor signaling. In addition, the induction of autophagy by FOXO-mediated glutamine synthetase expression might contribute to the tumor suppressive function of FOXOs.


Subject(s)
Autophagy , Glutamine/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Glutamate-Ammonia Ligase/metabolism , Humans , Models, Biological , TOR Serine-Threonine Kinases/metabolism
8.
Nat Cell Biol ; 14(8): 829-37, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22820375

ABSTRACT

The PI(3)K-PKB-FOXO signalling network provides a major intracellular hub for the regulation of cell proliferation, survival and stress resistance. Here we report an unexpected role for FOXO transcription factors in regulating autophagy by modulating intracellular glutamine levels. To identify transcriptional targets of this network, we performed global transcriptional analyses after conditional activation of the key components PI(3)K, PKB/Akt, FOXO3 and FOXO4. Using this pathway approach, we identified glutamine synthetase as being transcriptionally regulated by PI(3)K-PKB-FOXO signalling. Conditional activation of FOXO also led to an increased level of glutamine production. FOXO activation resulted in mTOR inhibition by preventing the translocation of mTOR to lysosomal membranes in a glutamine-synthetase-dependent manner. This resulted in an increased level of autophagy as measured by LC3 lipidation, p62 degradation and fluorescent imaging of multiple autophagosomal markers. Inhibition of FOXO3-mediated autophagy increased the level of apoptosis, suggesting that the induction of autophagy by FOXO3-mediated glutamine synthetase expression is important for cellular survival. These findings reveal a growth-factor-responsive network that can directly modulate autophagy through the regulation of glutamine metabolism.


Subject(s)
Autophagy , Forkhead Transcription Factors/metabolism , Glutamine/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases , Animals , Base Sequence , Blotting, Western , Cell Proliferation , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Glutamate Synthase/genetics , Glutamate Synthase/metabolism , Humans , Mice , Microarray Analysis , Molecular Sequence Data , Phosphatidylinositol 3-Kinases/genetics , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , Rats , Sequence Alignment , Signal Transduction
10.
Cell Mol Neurobiol ; 31(6): 949-59, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21553248

ABSTRACT

Brain tumors are heterogeneous tumors composed of differentiated tumor cells that resemble various neural cells and a small number of multipotent cancer stem cells. These tumors modify normal cells in their environment to promote tumor growth, invasion and metastases by various ways. Recent publications show that glioblastoma cells release microvesicles that contain a select subset of cellular proteins and RNAs. These microvesicles are avidly taken up by normal cells in cell culture and can change the translational profile of these cells through delivery of tumor-derived mRNAs, which are translated into functional proteins. In addition to mRNA and proteins, microvesicles have been shown to contain microRNAs, non-coding RNAs and DNA. This commentary explores the recent advances in this novel intercellular communication route and discusses the potential physiological role of microvesicles in brain tumorigenesis.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Communication , Extracellular Space/metabolism , Nervous System/pathology , Secretory Vesicles/metabolism , Animals , Humans , Nervous System/metabolism , Tumor Microenvironment
11.
Antioxid Redox Signal ; 14(4): 579-92, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-20673124

ABSTRACT

The evolutionarily conserved Forkhead box O (FOXO) family of transcription factors regulates multiple transcriptional targets involved in various cellular processes, including proliferation, stress resistance, apoptosis, and metabolism. Target gene regulation appears to be controlled in a cell-type-specific manner due to association of FOXO isoforms with specific cofactors. Many of the cellular processes modulated by FOXO are themselves deregulated in tumorigenesis, and deletion of Foxo genes has demonstrated that these transcription factors function as tumor suppressors. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions. In this review we describe the functional consequences of FOXO activation based on our current knowledge of transcriptional targets.


Subject(s)
Forkhead Transcription Factors/metabolism , Animals , Autophagy/physiology , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation , Forkhead Transcription Factors/genetics , Humans , Models, Biological
12.
J Biol Chem ; 282(4): 2211-20, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17132628

ABSTRACT

Leukemic transformation often requires activation of protein kinase B (PKB/c-Akt) and is characterized by increased proliferation, decreased apoptosis, and a differentiation block. PKB phosphorylates and inactivates members of the FOXO subfamily of Forkhead transcription factors. It has been suggested that hyperactivation of PKB maintains the leukemic phenotype through actively repressing FOXO-mediated regulation of specific genes. We have found expression of the transcriptional repressor Id1 (inhibitor of DNA binding 1) to be abrogated by FOXO3a activation. Inhibition of PKB activation or growth factor deprivation also resulted in strong down-regulation of Id1 promoter activity, Id1 mRNA, and protein expression. Id1 is highly expressed in Bcr-Abl-transformed K562 cells, correlating with high PKB activation and FOXO3a phosphorylation. Inhibition of Bcr-Abl by the chemical inhibitor STI571 resulted in activation of FOXO3a and down-regulation of Id1 expression. By performing chromatin immunoprecipitation assays and promoter-mutation analysis, we demonstrate that FOXO3a acts as a transcriptional repressor by directly binding to the Id1 promoter. STI571 treatment, or expression of constitutively active FOXO3a, resulted in erythroid differentiation of K562 cells, which was inhibited by ectopic expression of Id1. Taken together our data strongly suggest that high expression of Id1, through PKB-mediated inhibition of FOXO3a, is critical for maintenance of the leukemic phenotype.


Subject(s)
Cell Differentiation , Cell Transformation, Neoplastic , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Genes, abl , Inhibitor of Differentiation Protein 1/genetics , Animals , Base Sequence , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Differentiation/genetics , Cell Line, Transformed , Down-Regulation , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Humans , Inhibitor of Differentiation Protein 1/metabolism , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mice , Molecular Sequence Data , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...