Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 9(1): 819, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692572

ABSTRACT

Reactive oxygen species (ROS) function as second messengers in signal transduction, but high ROS levels can also cause cell death. MTH1 dephosphorylates oxidized nucleotides, thereby preventing their incorporation into DNA and protecting tumour cells from oxidative DNA damage. Inhibitors of MTH1 (TH588 and (S)-crizotinib) were shown to reduce cancer cell viability. However, the MTH1-dependency of the anti-cancer effects of these drugs has recently been questioned. Here, we have assessed anti-tumour effects of TH588 and (S)-crizotinib in patient-derived 3D colorectal cancer cultures. Hypoxia and reoxygenation - conditions that increase intracellular ROS levels - increased sensitivity to (S)-crizotinib, but not to TH588. (S)-crizotinib reduced tyrosine phosphorylation of c-MET and ErbB3 whereas TH588 induced a mitotic cell cycle arrest, which was not affected by adding ROS-modulating compounds. Furthermore, we show that both compounds induced DNA damage that could not be prevented by adding the ROS inhibitor N-acetyl-L-cysteine. Moreover, adding ROS-modulating compounds did not alter the reduction in viability in response to TH588 and (S)-crizotinib. We conclude that TH588 and (S)-crizotinib have very clear and distinct anti-tumour effects in 3D colorectal cancer cultures, but that these effects most likely occur through distinct and ROS-independent mechanisms.


Subject(s)
Colorectal Neoplasms/metabolism , Crizotinib/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Organoids/cytology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Pyrimidines/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Humans , Organoids/drug effects , Organoids/metabolism , Patient-Specific Modeling , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
2.
J Cell Physiol ; 234(7): 10260-10269, 2019 07.
Article in English | MEDLINE | ID: mdl-30387148

ABSTRACT

Lysyl oxidase-like 2 (LOXL2) belongs to the family of lysyl oxidases, and as such promotes crosslinking of collagens and elastin by oxidative deamination of lysine residues. In endothelial cells (ECs), LOXL2 is involved in crosslinking and scaffolding of collagen IV. Additionally, several reports have shown a role for LOXL2 in other processes, including regulation of gene expression, tumor metastasis, and epithelial-to-mesenchymal transition (EMT). Here, we demonstrate an additional role for LOXL2 in the regulation of angiogenesis by modulation of endothelial-to-mesenchymal transition (EndMT). LOXL2 knockdown in ECs results in decreased migration and sprouting, and concordantly, LOXL2 overexpression leads to an increase in migration and sprouting, independent of its catalytic activity. Furthermore, LOXL2 knockdown resulted in a reduced expression of EndMT markers, and inhibition of transforming growth factor-ß (TGF-ß)-mediated induction of EndMT. Interestingly, unlike in EMT, overexpression of LOXL2 alone is insufficient to induce EndMT. Further investigation revealed that LOXL2 expression regulates protein kinase B (PKB)/Akt and focal adhesion kinase (FAK) signaling, both pathways that have been implicated in the regulation of EMT. Altogether, our studies reveal a role for LOXL2 in angiogenesis through the modulation of EndMT in ECs, independent of its enzymatic crosslinking activity.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Endothelial Cells/enzymology , Epithelial-Mesenchymal Transition , Neovascularization, Physiologic , Amino Acid Oxidoreductases/genetics , Cell Movement , Cell Proliferation , Enzyme Activation , Focal Adhesion Kinase 1/metabolism , Humans , Mutation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
3.
PLoS One ; 13(10): e0205536, 2018.
Article in English | MEDLINE | ID: mdl-30308036

ABSTRACT

BACKGROUND: Aldehyde dehydrogenase 1A1 (ALDH1A1) encodes an enzyme that oxidizes aldehydes to their corresponding carboxylic acids. In colorectal cancer ALDH1A1 marks cancer stem cells and plays putative roles in tumor progression and drug resistance. However, the potential value of ALDH1A1 as a diagnostic marker or target for therapy remains unclear. Here, we have analyzed ALDH1A1 mRNA and protein levels in relation to clinical, histopathological and molecular tumor features in large series of human colorectal cancer. METHODS: ALDH1A1 protein levels were determined by immunohistochemistry in a series of primary colorectal tumors and their corresponding liver metastases (n = 158). ALDH1A1 mRNA levels were analyzed in several large patient cohorts of colorectal cancer. ALDH1A1 mRNA and protein levels were then related to overall survival and to clinical, histopathological and molecular tumor features. RESULTS: High levels of ALDH1A1 were associated with a poorly differentiated histology and a right-sided tumor location, but not to a mesenchymal-like molecular subtype. Liver metastases contained significantly higher levels of ALDH1A1 compared to the corresponding primary tumors. Radio- and/or chemotherapy prior to tumor resection was associated with increased ALDH1A1 levels regardless of the molecular subtype. Finally, ALDH1A1 protein expression in primary tumors and metastases correlated with shorter overall survival. CONCLUSIONS: ALDH1A1 expression is associated with features of poor prognosis, including a poorly differentiated histology and 'right-sidedness' of the primary tumor, and with shorter overall survival. ALDH1A1 is also highly expressed in therapy-surviving tumors and in liver metastases. These results warrant further research into the potential value of targeting ALDH1A1 in order to improve the efficacy of standard treatment and thereby preventing tumor recurrence.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Colorectal Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor/metabolism , Carcinoma/metabolism , Carcinoma/mortality , Carcinoma/pathology , Carcinoma/therapy , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Computational Biology , Female , Gene Expression , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Male , Microarray Analysis , Middle Aged , Prognosis , Retinal Dehydrogenase , Survival Analysis
4.
Am J Pathol ; 188(10): 2369-2377, 2018 10.
Article in English | MEDLINE | ID: mdl-30031728

ABSTRACT

High levels of oxidative stress in disseminated colorectal cancer tumor cells may form a therapeutically exploitable vulnerability. However, it is unclear whether oxidative stress and damage persist in metastases. Therefore, we analyzed markers of oxidative damage in primary colorectal tumors and their corresponding liver metastases. Markers of generic and oxidative DNA damage [phosphorylated histone H2AX (γH2AX) and 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were significantly higher in liver metastases compared with their corresponding primary tumors. Chemotherapy and/or radiotherapy before tumor resection was associated with increased persistent oxidative DNA damage, and this effect was more pronounced in metastases. Immunohistochemistry-based molecular classification into epithelial- and mesenchymal-like molecular subtypes revealed that untreated mesenchymal-like tumors contained lower levels of oxidative DNA damage compared with epithelial-like tumors. Treated mesenchymal-like tumors, but not epithelial-like tumors, showed significantly higher levels of γH2AX and 8-OHdG. Mesenchymal-like tumors expressed significantly lower levels of phosphorylated nuclear factor erythroid 2-related factor 2, a master regulator of the antioxidant response, and nuclear factor erythroid 2-related factor 2-controlled genes. Of interest, a positive 8-OHdG status identified a subgroup of mesenchymal-like metastases with a poor overall survival. An increased capacity to tolerate therapy-induced oxidative damage in mesenchymal-like colorectal cancer may explain, at least in part, the poor responsiveness of these tumors to chemotherapy, which could contribute to the poor survival of this patient subgroup.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms/secondary , Oxidative Stress/physiology , Adult , Aged , Aged, 80 and over , DNA Damage/physiology , Female , Humans , Liver Neoplasms/physiopathology , Liver Neoplasms/therapy , Male , Middle Aged , Neoadjuvant Therapy , Prognosis , Prospective Studies
5.
Oncotarget ; 8(49): 86296-86311, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156796

ABSTRACT

Surgical removal of colorectal cancer (CRC) liver metastases generates areas of tissue hypoxia. Hypoxia imposes a stem-like phenotype on residual tumor cells and promotes tumor recurrence. Moreover, in primary CRC, gene expression signatures reflecting hypoxia and a stem-like phenotype are highly expressed in the aggressive Consensus Molecular Subtype 4 (CMS4). Therapeutic strategies eliminating hypoxic stem-like cells may limit recurrence following resection of primary tumors or metastases. Here we show that expression of DNA repair genes is strongly suppressed in CMS4 and inversely correlated with hypoxia-inducible factor-1 alpha (HIF1α) and HIF-2α co-expression signatures. Tumors with high expression of HIF signatures and low expression of repair proteins showed the worst survival. In human tumors, expression of the repair proteins RAD51, KU70 and RIF1 was strongly suppressed in hypoxic peri-necrotic tumor areas. Experimentally induced hypoxia in patient derived colonospheres in vitro or in vivo (through vascular clamping) was sufficient to downregulate repair protein expression and caused DNA damage. Hypoxia-induced DNA damage was prevented by expressing the hydroperoxide-scavenging enzyme glutathione peroxidase-2 (GPx2), indicating that reactive oxygen species mediate hypoxia-induced DNA damage. Finally, the hypoxia-activated prodrug Tirapazamine greatly augmented DNA damage and reduced the fraction of stem-like (Aldefluorbright) tumor cells in vitro, and in vivo following vascular clamping. We conclude that decreased expression of DNA repair proteins and increased DNA damage in hypoxic tumor areas may be therapeutically exploited with hypoxia-activated prodrugs, and that such drugs reduce the fraction of Aldefluorbright (stem-like) tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...