Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Stem Cell Reports ; 18(10): 1954-1971, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37774701

ABSTRACT

Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Proteomics , Cells, Cultured , Muscle, Skeletal , Tissue Engineering/methods , Myoblasts/metabolism , Cell Differentiation/genetics
2.
Cell Death Dis ; 14(3): 231, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002195

ABSTRACT

The ubiquitin proteasomal system is a critical regulator of muscle physiology, and impaired UPS is key in many muscle pathologies. Yet, little is known about the function of deubiquitinating enzymes (DUBs) in the muscle cell context. We performed a genetic screen to identify DUBs as potential regulators of muscle cell differentiation. Surprisingly, we observed that the depletion of ubiquitin-specific protease 18 (USP18) affected the differentiation of muscle cells. USP18 depletion first stimulated differentiation initiation. Later, during differentiation, the absence of USP18 expression abrogated myotube maintenance. USP18 enzymatic function typically attenuates the immune response by removing interferon-stimulated gene 15 (ISG15) from protein substrates. However, in muscle cells, we found that USP18, predominantly nuclear, regulates differentiation independent of ISG15 and the ISG response. Exploring the pattern of RNA expression profiles and protein networks whose levels depend on USP18 expression, we found that differentiation initiation was concomitant with reduced expression of the cell-cycle gene network and altered expression of myogenic transcription (co) factors. We show that USP18 depletion altered the calcium channel gene network, resulting in reduced calcium flux in myotubes. Additionally, we show that reduced expression of sarcomeric proteins in the USP18 proteome was consistent with reduced contractile force in an engineered muscle model. Our results revealed nuclear USP18 as a critical regulator of differentiation initiation and maintenance, independent of ISG15 and its role in the ISG response.


Subject(s)
Cytokines , Ubiquitins , Cytokines/metabolism , Ubiquitins/metabolism , Interferons , Cell Differentiation/genetics , Muscles/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
4.
Sci Rep ; 10(1): 17621, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077830

ABSTRACT

Muscle wasting and atrophy are regulated by multiple molecular processes, including mRNA processing. Reduced levels of the polyadenylation binding protein nucleus 1 (PABPN1), a multifactorial regulator of mRNA processing, cause muscle atrophy. A proteomic study in muscles with reduced PABPN1 levels suggested dysregulation of sarcomeric and cytoskeletal proteins. Here we investigated the hypothesis that reduced PABPN1 levels lead to an aberrant organization of the cytoskeleton. MURC, a plasma membrane-associated protein, was found to be more abundant in muscles with reduced PABPN1 levels, and it was found to be expressed at regions showing regeneration. A polarized cytoskeletal organization is typical for muscle cells, but muscle cells with reduced PABPN1 levels (named as shPAB) were characterized by a disorganized cytoskeleton that lacked polarization. Moreover, cell mechanical features and myogenic differentiation were significantly reduced in shPAB cells. Importantly, restoring cytoskeletal stability, by actin overexpression, was beneficial for myogenesis, expression of sarcomeric proteins and proper localization of MURC in shPAB cell cultures and in shPAB muscle bundle. We suggest that poor cytoskeletal mechanical features are caused by altered expression levels of cytoskeletal proteins and contribute to muscle wasting and atrophy.


Subject(s)
Cytoskeleton/metabolism , Muscular Atrophy/metabolism , Poly(A)-Binding Protein I/metabolism , Actins/metabolism , Cell Line , Humans , Muscle Development/physiology , Muscle, Skeletal/metabolism
5.
Stem Cell Res ; 40: 101560, 2019 10.
Article in English | MEDLINE | ID: mdl-31518905

ABSTRACT

Facioscapulohumeral dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4q resulting in sporadic misexpression of the transcription factor DUX4 in skeletal muscle tissue. In ~4% of families, de novo D4Z4 contractions occur after fertilization resulting in somatic mosaicism with control and FSHD1 cell populations present within the same patient. Reprogramming of mosaic fibroblasts from two FSHD1 patients into human induced pluripotent stem cells (hiPSCs) generated genetically matched control and FSHD1 hiPSC lines. All hiPSC lines contained a normal karyotype, expressed pluripotency genes and differentiated into cells from the three germ layers.


Subject(s)
Cell Line/cytology , Induced Pluripotent Stem Cells/cytology , Muscular Dystrophy, Facioscapulohumeral/genetics , Cell Differentiation , Cell Line/metabolism , Cellular Reprogramming , Fibroblasts/cytology , Fibroblasts/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Mutation
6.
Stem Cell Reports ; 10(6): 1975-1990, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29731431

ABSTRACT

Although skeletal muscle cells can be generated from human induced pluripotent stem cells (iPSCs), transgene-free protocols include only limited options for their purification and expansion. In this study, we found that fluorescence-activated cell sorting-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 × 1011-fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of acid α-glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/Cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies.


Subject(s)
Batch Cell Culture Techniques , Induced Pluripotent Stem Cells/cytology , Muscle Fibers, Skeletal/cytology , CRISPR-Cas Systems , Cell Differentiation , Cell- and Tissue-Based Therapy , Computational Biology/methods , Gene Expression Profiling , Glycogen Storage Disease Type II/therapy , Humans , Regeneration , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stem Cell Transplantation
7.
Int Rev Cell Mol Biol ; 335: 85-141, 2018.
Article in English | MEDLINE | ID: mdl-29305015

ABSTRACT

Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.


Subject(s)
Alternative Splicing/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/therapy , Animals , Genetic Diseases, Inborn/genetics , Homeostasis , Humans , Models, Biological , Mutation/genetics
8.
Mol Ther Nucleic Acids ; 7: 101-115, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28624186

ABSTRACT

Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs.

9.
Mol Ther Nucleic Acids ; 7: 90-100, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28624228

ABSTRACT

The most common variant causing Pompe disease is c.-32-13T>G (IVS1) in the acid α-glucosidase (GAA) gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs) to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA)-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

10.
Stem Cell Reports ; 3(4): 548-55, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25358783

ABSTRACT

Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.


Subject(s)
DNA Methylation , Fibroblasts/metabolism , Fragile X Mental Retardation Protein/genetics , Gene Silencing , Induced Pluripotent Stem Cells/metabolism , Mutation , Adolescent , Animals , Case-Control Studies , Cell Line , Cellular Reprogramming , Child , Child, Preschool , Female , Fibroblasts/cytology , Fragile X Mental Retardation Protein/metabolism , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Nature ; 495(7442): 516-9, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23503660

ABSTRACT

Embryonic stem (ES) cells are pluripotent and characterized by open chromatin and high transcription levels, achieved through auto-regulatory and feed-forward transcription factor loops. ES-cell identity is maintained by a core of factors including Oct4 (also known as Pou5f1), Sox2, Klf4, c-Myc (OSKM) and Nanog, and forced expression of the OSKM factors can reprogram somatic cells into induced pluripotent stem cells (iPSCs) resembling ES cells. These gene-specific factors for RNA-polymerase-II-mediated transcription recruit transcriptional cofactors and chromatin regulators that control access to and activity of the basal transcription machinery on gene promoters. How the basal transcription machinery is involved in setting and maintaining the pluripotent state is unclear. Here we show that knockdown of the transcription factor IID (TFIID) complex affects the pluripotent circuitry in mouse ES cells and inhibits reprogramming of fibroblasts. TFIID subunits and the OSKM factors form a feed-forward loop to induce and maintain a stable transcription state. Notably, transient expression of TFIID subunits greatly enhanced reprogramming. These results show that TFIID is critical for transcription-factor-mediated reprogramming. We anticipate that, by creating plasticity in gene expression programs, transcription complexes such as TFIID assist reprogramming into different cellular states.


Subject(s)
Pluripotent Stem Cells/metabolism , Transcription Factor TFIID/metabolism , Transcription, Genetic , Animals , Cellular Reprogramming/genetics , Chromatin/genetics , Chromatin/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Male , Mice , Pluripotent Stem Cells/cytology , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , TATA-Binding Protein Associated Factors/deficiency , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Box Binding Protein/metabolism , Transcription Factor TFIID/deficiency , Transcription Factor TFIID/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Biochim Biophys Acta ; 1823(10): 1894-904, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22789442

ABSTRACT

Nur77, Nurr1 and NOR-1 form the NR4A subfamily of the nuclear receptor superfamily and have been shown to regulate various biological processes among which are cell survival and differentiation, apoptosis, inflammation and metabolism. These nuclear receptors have been proposed to act in a ligand-independent manner and we aim to gain insight in the regulation of NR4A activity. A yeast two-hybrid screen identified the peptidyl-prolyl isomerase Pin1 as a novel binding partner of NR4As, which was confirmed by co-immunoprecipitation. Pin1 enhances the transcriptional activity of all three NR4A nuclear receptors and increases protein stability of Nur77 through inhibition of its ubiquitination. Enhanced transcriptional activity of NR4As requires the WW-domain of Pin1 that interacts with the N-terminal transactivation domain and the DNA-binding domain of Nur77. Most remarkably, this enhanced activity is independent of Pin1 isomerase activity. A systematic mutation analysis of all 17 Ser/Thr-Pro-motifs in Nur77 revealed that Pin1 enhances protein stability of Nur77 in an isomerase-dependent manner by acting on phosphorylated Nur77 involving protein kinase CK2-mediated phosphorylation of the Ser(152)-Pro(153) motif in Nur77. Given the role of Nur77 in vascular disease and metabolism, this novel regulation mechanism provides perspectives to manipulate Nur77 activity to attenuate these processes.


Subject(s)
Membrane Transport Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Peptidylprolyl Isomerase/metabolism , Amino Acid Sequence , Casein Kinase II/metabolism , HEK293 Cells , Humans , Membrane Transport Proteins/chemistry , Molecular Sequence Data , NIMA-Interacting Peptidylprolyl Isomerase , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry , Proline/metabolism , Protein Binding , Protein Stability , Protein Structure, Tertiary , Serine/metabolism , Ubiquitination
13.
J Biol Chem ; 286(52): 44336-43, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22049082

ABSTRACT

The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.


Subject(s)
Gene Expression Regulation/physiology , LIM-Homeodomain Proteins/metabolism , Muscle Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , DNA/biosynthesis , DNA/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , LIM-Homeodomain Proteins/genetics , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Muscle Proteins/genetics , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Organ Specificity/physiology , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Promoter Regions, Genetic/physiology , Protein Structure, Tertiary , Repressor Proteins/genetics , Transcription Factors/genetics , Two-Hybrid System Techniques , Vascular Diseases/genetics , Vascular Diseases/metabolism
14.
Am J Pathol ; 179(4): 1988-2000, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21854744

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in poly(A) binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. Transgene expression is induced on myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to those observed in patients with OPMD. Quantitative analysis of PABPN1 in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. We found that aggregation of expPABPN1 is more affected than WT PABPN1 by inhibition of proteasome activity. Consistent with this, in myotube cultures expressing expPABPN1, deregulation of the proteasome was identified as the most significantly perturbed pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and rate of protein turnover. This study demonstrates, for the first time to our knowledge, that, in myotubes, the ratio of soluble/insoluble expPABPN1 is significantly lower compared with that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.


Subject(s)
Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Oculopharyngeal/metabolism , Muscular Dystrophy, Oculopharyngeal/pathology , Mutant Proteins/metabolism , Poly(A)-Binding Protein II/metabolism , Animals , Base Sequence , Cells, Cultured , Desmin/genetics , Disease Models, Animal , Humans , Intranuclear Inclusion Bodies/metabolism , Mice , Molecular Sequence Data , Muscle Fibers, Skeletal/metabolism , Muscles/pathology , Muscular Dystrophy, Oculopharyngeal/genetics , Mutant Proteins/chemistry , Poly(A)-Binding Protein II/chemistry , Poly(A)-Binding Protein II/genetics , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Quaternary , Signal Transduction , Solubility , Transcriptome , Transfection , Trinucleotide Repeat Expansion/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...