Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608681

ABSTRACT

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Subject(s)
Intellectual Disability , Lymphopenia , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Signal Transduction/genetics , Intellectual Disability/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Lymphopenia/genetics
2.
J Invest Dermatol ; 141(8): 1943-1953.e13, 2021 08.
Article in English | MEDLINE | ID: mdl-33610558

ABSTRACT

Dupilumab, a mAb targeting IL-4 receptor alpha (IL-4Rα), markedly improves disease severity in patients with atopic dermatitis. However, the effect of IL-4Rα blockade on dynamics of circulating skin-homing T cells, which are crucial players in the pathologic mechanism of atopic dermatitis, has not been studied yet. In addition, it remains unknown whether dupilumab treatment induces long-lasting T- and B-cell polarization. Therefore, we studied the short- and long-term effects of dupilumab treatment on IL-4Rα expression and T-cell cytokine production within total and skin-homing (cutaneous lymphocyte antigen+/CCR4+) subpopulations in patients with moderate-to-severe atopic dermatitis. Dupilumab treatment completely blocked IL-4Rα expression and signal transducer and activator of transcription 6 phosphorylation in CD19+ B cells and CD4+ T cells within 2 hours of administration and through week 52. Although no change in the proportion of skin-homing T-cell subsets was found, dupilumab treatment significantly decreased the percentage of proliferating (Ki67+) and T helper type 2 and T helper type 22 cytokine-producing skin-homing CD4+ T cells at week 4. No evidence of general T helper type cell skewing following a year of dupilumab treatment was found. In summary, dupilumab treatment rapidly and stably inhibited IL-4Rα, which was accompanied by a strong early functional immunological effect specifically on skin-homing T cells without affecting overall T helper type cell skewing in the long term.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Dermatitis, Atopic/drug therapy , T-Lymphocytes/drug effects , Adult , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/immunology , Drug Administration Schedule , Female , Humans , Injections, Subcutaneous , Interleukin-4 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-4 Receptor alpha Subunit/metabolism , Male , Middle Aged , Severity of Illness Index , Skin/cytology , Skin/immunology , Skin/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
3.
J Clin Invest ; 128(10): 4669-4681, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30198907

ABSTRACT

Chronic inflammatory diseases are characterized by recurrent inflammatory attacks in the tissues mediated by autoreactive T cells. Identity and functional programming of CD8+ T cells at the target site of inflammation still remain elusive. One key question is whether, in these antigen-rich environments, chronic stimulation leads to CD8+ T cell exhaustion comparable to what is observed in infectious disease contexts. In the synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients, a model of chronic inflammation, an overrepresentation of PD-1+CD8+ T cells was found. Gene expression profiling, gene set enrichment analysis, functional studies, and extracellular flux analysis identified PD-1+CD8+ T cells as metabolically active effectors, with no sign of exhaustion. Furthermore, PD-1+CD8+ T cells were enriched for a tissue-resident memory (Trm) cell transcriptional profile and demonstrated increased clonal expansion compared with the PD-1- counterpart, suggesting antigen-driven expansion of locally adapted cells. Interestingly, this subset was also found increased in target tissues in other human chronic inflammatory diseases. These data indicate that local chronic inflammation drives the induction and expansion of CD8+ T cells endowed with potential detrimental properties. Together, these findings lay the basis for investigation of PD-1-expressing CD8+ T cell targeting strategies in human chronic inflammatory diseases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Programmed Cell Death 1 Receptor/immunology , Adolescent , Adult , CD8-Positive T-Lymphocytes/pathology , Child , Child, Preschool , Chronic Disease , Female , Humans , Infant , Inflammation , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...