Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835773

ABSTRACT

Black soldier fly larvae (BSFL) are considered a commercially viable solution for global organic waste problems. The objective of this study was to assess the feasibility of rearing BSFL on a wide range of low-value waste streams and its potential to transform them into high-quality animal feed and fertilizer. Six waste streams of different origins were selected and each tested in triplicate. Several parameters were analysed: growth performance, waste reduction index (WRI), conversion efficiency (ECI) and larval composition. Frass composition was also analysed. Larvae reared on fast food waste (FFW) had the highest ECI and WRI and the lowest values when reared on pig manure slurry mixed with silage grass (PMLSG) and slaughter waste (SW). The highest protein content was found for larvae reared on mushroom stems (MS) although this substrate had the lowest protein content. Moreover, the frass nutritional profile was proportionally related to the substrate's nutritional profile: the protein-rich substrate (SW) resulted in protein-rich frass and the low-protein substrate (MS) resulted in protein-poor frass. The same was true for the lipid content. In conclusion, this study showed that BSFL can be successfully reared on a wide range of waste streams that can affect the larval and frass chemical compositions.

2.
Animals (Basel) ; 11(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34827814

ABSTRACT

Insects can play an important role to upgrade waste streams into high-grade proteins and fats as food and feed ingredients or non-food products. The aim of this research was to assess the feasibility to use waste streams with a low value for direct application as animal feed as substrates to grow BSF larvae in terms of larval growth rate, waste reduction index, and efficiency of conversion of ingested feed. The growth of black soldier fly (BSF), Hermetia illucens larvae and conversion of biowaste was assessed in triplicate in biowaste substrates: chicken feed (CF; reference diet), pig manure solid (PMS), Betafert® solid (BTFS), swill (SW), olive pulp (OP), pig manure liquid mixed with chicken feed (PMLCF), and silage grass (SG). Per kilogram fresh substrate 2500 starter (8-days-old, second instar) larvae were incubated in 21 plastic containers (75 × 47 × 15 cm). The BSF larvae were fed according to a batch feeding system. Highest growth rate was found in larvae reared on SW (13.4 mg/d). Larval growth rate was even higher than in larvae reared on the reference substrate CF (7.2 mg/d). Growth rate in larvae reared on PMLCF (7.3 mg/d) did not differ from CF, whereas growth rate of larvae reared on PMS (3.2 mg/d) was lower than on CF. Growth rate of larvae reared on BTFS, OP and SG was very low (0.6, 0.2 and 0.7 mg/d, respectively). Waste Reduction Index (WRI) was highest on SW (11.3), followed by PMLCF (9.3), and both were higher than WRI on CF (8.5). Waste Reduction Index further decreased in descending order from PMS, SG, BTFS to OP (7.6, 4.0, 2.9 and 1.7, respectively). The Efficiency of Conversion of Ingested substrate (ECI) was highest on SW (0.31), followed in descending order by PMLCF, CF and PMS (0.25, 0.21 and 0.18, respectively). The substrates OP, BTFS and SG (0.16, 0.15 and 0.14, respectively) resulted in a lower ECI than other substrates. Highest CO2 and lowest NH3 concentrations were found above substrates with the highest larval growth performances. This study showed that BSF larvae can be reared on different biowaste substrates; the growth rate of the larvae was extremely high on SW. The effects of chemical composition and physical properties of the substrates on larval growth and gas emissions should be further considered.

3.
Genes Nutr ; 14: 8, 2019.
Article in English | MEDLINE | ID: mdl-30923583

ABSTRACT

BACKGROUND: Micro algae's are worldwide considered as an alternative source of proteins in diets for animals and humans. Micro algae also produce an array of biological active substances with potential to induce beneficial and health promoting effects. To better understand the mode of action of micro algae's when applied as additive in diets, porcine intestinal epithelial cells (IPEC-J2), stressed by enterotoxigenic Escherichia coli (ETEC) or under non-stressed conditions, were exposed to micro algae extracts and changes in gene expression were recorded. METHODS: IPEC-J2 cells were exposed for 2 and 6 h to extracts prepared from the biomass of the microalgae Chlorella vulgaris (C), Haematococcus pluvialis (H), Spirulina platensis (S), or a mixture of Scenedesmus obliques and Chlorella sorokiniana (AM), in the absence and presence of ETEC. Gene expression in cells was measured using porcine "whole genome" microarrays. RESULTS: The micro algae extracts alone enhanced the expression of a set of genes coding for proteins with biological activity that are secreted from cells. These secreted proteins (hereafter denoted as effector proteins; EPs) may regulate processes like remodelling of the extracellular matrix, activation of an antiviral/bacterial response and oxygen homeostasis in the intestine and periphery. Elevated gene expression of immunostimulatory proteins CCL17, CXCL2, CXCL8 (alias IL8), IFNA, IFNL1, HMOX1, ITGB3, and THBS1 was observed in response to all four extracts in the absence or presence of ETEC. For several of these immunostimulatory proteins no elevated expression was observed when cells were exposed to ETEC alone. Furthermore, all extracts highly stimulated expression of an antisense RNA of the mitochondrial/peroxisome symporter SLC25A21 gene in ETEC-challenged cells. Inhibition of SLC25A21 translation by this antisense RNA may impose a concentration gradient of 2-oxoadipic and 2-oxoglutarate, both metabolites of fatty acid ß-oxidation, between the cytoplasm and the interior of these organelles. CONCLUSIONS: Exposure of by ETEC stressed intestinal epithelium cells to micro algae extracts affected "fatty acid ß-oxidation", ATP and reactive oxygen species production and (de) hydroxylation of lysine residues in procollagen chains in these cells. Elevated gene expression of specific EPs and immunostimulatory proteins indicated that micro algae extracts, when used as feed/food additive, can steer an array of metabolic and immunological processes in the intestines of humans and monogastric animals stressed by an enteric bacterial pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...