Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 12(24): e029491, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38084716

ABSTRACT

BACKGROUND: Staging of hemodynamic failure (HF) in symptomatic patients with cerebrovascular steno-occlusive disease is required to assess the risk of ischemic stroke. Since the gold standard positron emission tomography-based perfusion reserve is unsuitable as a routine clinical imaging tool, blood oxygenation level-dependent cerebrovascular reactivity (BOLD-CVR) with CO2 is a promising surrogate imaging approach. We investigated the accuracy of standardized BOLD-CVR to classify the extent of HF. METHODS AND RESULTS: Patients with symptomatic unilateral cerebrovascular steno-occlusive disease, who underwent both an acetazolamide challenge (15O-)H2O-positron emission tomography and BOLD-CVR examination, were included. HF staging of vascular territories was assessed using qualitative inspection of the positron emission tomography perfusion reserve images. The optimum BOLD-CVR cutoff points between HF stages 0-1-2 were determined by comparing the quantitative BOLD-CVR data to the qualitative (15O-)H2O-positron emission tomography classification using the 3-dimensional accuracy index to the randomly assigned training and test data sets with the following determination of a single cutoff for clinical application. In the 2-case scenario, classifying data points as HF 0 or 1-2 and HF 0-1 or 2, BOLD-CVR showed an accuracy of >0.7 for all vascular territories for HF 1 and HF 2 cutoff points. In particular, the middle cerebral artery territory had an accuracy of 0.79 for HF 1 and 0.83 for HF 2, whereas the anterior cerebral artery had an accuracy of 0.78 for HF 1 and 0.82 for HF 2. CONCLUSIONS: Standardized and clinically accessible BOLD-CVR examinations harbor sufficient data to provide specific cerebrovascular reactivity cutoff points for HF staging across individual vascular territories in symptomatic patients with unilateral cerebrovascular steno-occlusive disease.


Subject(s)
Acetazolamide , Cerebrovascular Disorders , Humans , Positron-Emission Tomography/methods , Middle Cerebral Artery , Hemodynamics , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods
2.
Theory Biosci ; 139(4): 319-335, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33241494

ABSTRACT

To what extent do simultaneous innovations occur and are independently from each other? In this paper we use a novel persistent keyword framework to systematically identify innovations in a large corpus containing academic papers in evolutionary medicine between 2007 and 2011. We examine whether innovative papers occurring simultaneously are independent from each other by evaluating the citation and co-authorship information gathered from the corpus metadata. We find that 19 out of 22 simultaneous innovative papers do, in fact, occur independently from each other. In particular, co-authors of simultaneous innovative papers are no more geographically concentrated than the co-authors of similar non-innovative papers in the field. Our result suggests producing innovative work draws from a collective knowledge pool, rather than from knowledge circulating in distinct localized collaboration networks. Therefore, new ideas can appear at multiple locations and with geographically dispersed co-authorship networks. Our findings support the perspective that simultaneous innovations are the outcome of collective behavior.


Subject(s)
Authorship , Biological Evolution , Medicine
3.
Neurosurgery ; 85(4): E756-E764, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31149726

ABSTRACT

INTRODUCTION: Reliable preoperative identification of patients at high risk for early postoperative complications occurring within 24 h (EPC) of intracranial tumor surgery can improve patient safety and postoperative management. Statistical analysis using machine learning algorithms may generate models that predict EPC better than conventional statistical methods. OBJECTIVE: To train such a model and to assess its predictive ability. METHODS: This cohort study included patients from an ongoing prospective patient registry at a single tertiary care center with an intracranial tumor that underwent elective neurosurgery between June 2015 and May 2017. EPC were categorized based on the Clavien-Dindo classification score. Conventional statistical methods and different machine learning algorithms were used to predict EPC using preoperatively available patient, clinical, and surgery-related variables. The performance of each model was derived from examining classification performance metrics on an out-of-sample test dataset. RESULTS: EPC occurred in 174 (26%) of 668 patients included in the analysis. Gradient boosting machine learning algorithms provided the model best predicting the probability of an EPC. The model scored an accuracy of 0.70 (confidence interval [CI] 0.59-0.79) with an area under the curve (AUC) of 0.73 and a sensitivity and specificity of 0.80 (CI 0.58-0.91) and 0.67 (CI 0.53-0.77) on the test set. The conventional statistical model showed inferior predictive power (test set: accuracy: 0.59 (CI 0.47-0.71); AUC: 0.64; sensitivity: 0.76 (CI 0.64-0.85); specificity: 0.53 (CI 0.41-0.64)). CONCLUSION: Using gradient boosting machine learning algorithms, it was possible to create a prediction model superior to conventional statistical methods. While conventional statistical methods favor patients' characteristics, we found the pathology and surgery-related (histology, anatomical localization, surgical access) variables to be better predictors of EPC.


Subject(s)
Algorithms , Brain Neoplasms/surgery , Machine Learning , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Registries , Adult , Aged , Area Under Curve , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...