Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 905: 167439, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37774886

ABSTRACT

A one year study was conducted in the city of Nijmegen, The Netherlands, to characterize various urban sources of antibiotics and antibiotic resistant genes (ARGs) in wastewater within a single sewer catchment. Prevalence of ermB, tet(W), sul1, sul2, intl1, and 16S rRNA gene was determined at 10 locations within the city. Sampling locations included a nursing home, a student residence, a hospital and an industrial area, among others. Wastewater concentrations of 23 antibiotics were measured using passive sampling. Additionally, excreted loads of 22 antibiotics were estimated based on ambulatory prescription and clinical usage data. Genes sul1 and intl1 were most abundant across most locations. Ciprofloxacin and amoxicillin together contributed over 92 % of the total estimated antibiotic selective pressure at all sampling points. The present study highlights the prominent role that hospitals can have in the prevalence and proliferation of ARGs in urban wastewater. Furthermore, results suggest that even short-term changes in the therapeutic regimen prescribed in hospitals may translate into shifting ARG abundance patterns in hospital wastewater. The methods applied present an opportunity to identify emission hotspots and prioritize intervention options to limit ARG spread from urban wastewater to the environment.


Subject(s)
Anti-Bacterial Agents , Wastewater , Humans , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics
2.
J Contam Hydrol ; 246: 103954, 2022 04.
Article in English | MEDLINE | ID: mdl-35114497

ABSTRACT

In recent years, DNA-tagged silica colloids have been used as an environmental tracer. A major advantage of this technique is that the DNA-coding provides an unlimited number of unique tracers without a background concentration. However, little is known about the effects of physio-chemical subsurface properties on the transport behavior of DNA-tagged silica tracers. We are the first to explore the deposition kinetics of this new DNA-tagged silica tracer for different pore water chemistries, flow rates, and sand grain size distributions in a series of saturated sand column experiments in order to predict environmental conditions for which the DNA-tagged silica tracer can best be employed. Our results indicated that the transport of DNA-tagged silica tracer can be well described by first order kinetic attachment and detachment. Because of massive re-entrainment under transient chemistry conditions, we inferred that attachment was primarily in the secondary energy minimum. Based on calculated sticking efficiencies of the DNA-tagged silica tracer to the sand grains, we concluded that a large fraction of the DNA-tagged silica tracer colliding with the sand grain surface did also stick to that surface, when the ionic strength of the system was higher. The experimental results revealed the sensitivity of DNA-tagged silica tracer to both physical and chemical factors. This reduces its applicability as a conservative hydrological tracer for studying subsurface flow paths. Based on our experiments, the DNA-tagged silica tracer is best applicable for studying flow routes and travel times in coarse grained aquifers, with a relatively high flow rate. DNA-tagged silica tracers may also be applied for simulating the transport of engineered or biological colloidal pollution, such as microplastics and pathogens.


Subject(s)
Sand , Silicon Dioxide , Colloids/chemistry , DNA , Plastics , Porosity , Silicon Dioxide/chemistry
3.
Anal Methods ; 12(25): 3242-3249, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32930187

ABSTRACT

A simple and reproducible method was developed and validated for simultaneous quantification of the pesticide fipronil and its intermediates fipronil desulfinyl, fipronil sulfone and fipronil sulfide, in soil. The analytes were extracted by ultrasonic bath and the ratio of solvents (hexane/acetone), number and time of cycles were optimized by Box-Behnken design with a triplicate central point. The optimal extraction conditions were achieved through a response surface analysis. The clean-up step was conducted by cartridges of solid phase extraction (SPE) containing silica (Florisil®) and aluminum oxide. Gas chromatography with electron capture detection (GC-ECD) was employed for separating fipronil and its intermediates with a suitable resolution and runtime of 20 minutes. The best quantification was achieved with 1 : 1 (v/v) acetone/hexane and 2 ultrasound cycles of 15 minutes each. The recovery values were between 81 to 108%, with relative standard deviation (RSD) lower than 6%, with no effect of the used matrix. Analytical curves presented regression coefficients values above 0.9908 for a concentration range from 0.005 to 0.6 µg g-1. Limits of detection (LOD) from 0.002 to 0.006 µg g-1 and limits of quantification (LOQ) from 0.006 to 0.020 µg g-1 were reached for all analytes. This method can be used to monitor and quantify fipronil and its intermediates in soil.

4.
Acta Trop ; 193: 217-226, 2019 May.
Article in English | MEDLINE | ID: mdl-30857860

ABSTRACT

The water-related exposome is a significant determinant of human health. The disease burden through water results from water-associated communicable and non-communicable diseases and is influenced by water pollution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper analyses a range of water practitioner-driven health issues, including infectious diseases and chemical intoxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), complemented with a selective literature review. Pressures in the environment result in changes in the State of the water body: chemical pollution, microbiological contamination and the presence of vectors. These and other health hazards affect the State of human health. The resulting Impacts in an exposed population or affected ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution, microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities. Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of several health issues at the same time. Systematic and integrated planning and management of water resources, with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing the health benefits.


Subject(s)
Communicable Diseases/transmission , Conservation of Water Resources , Water Microbiology , Water Pollution, Chemical/prevention & control , Animals , Communicable Disease Control , Disease Vectors , Ecosystem , Health Policy , Humans , Plastics , Water Pollution, Chemical/adverse effects
5.
Appl Microbiol Biotechnol ; 101(12): 5175-5188, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28321487

ABSTRACT

Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 µmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.


Subject(s)
Bacteria/metabolism , Benzene/metabolism , Biodegradation, Environmental , Biofilms/growth & development , Denitrification , Microbial Consortia/physiology , Anaerobiosis , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Benzene/pharmacology , Benzoic Acid/analysis , Biofilms/drug effects , Culture Media/chemistry , Microbial Consortia/drug effects , Microbial Consortia/genetics , Nitrates/metabolism , Peptococcaceae/classification , Peptococcaceae/genetics , Peptococcaceae/isolation & purification , Peptococcaceae/metabolism , RNA, Ribosomal, 16S/genetics
6.
Appl Microbiol Biotechnol ; 98(6): 2751-64, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24092007

ABSTRACT

To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.


Subject(s)
Bacteria/classification , Biodegradation, Environmental , Biota , Gasoline , Soil Microbiology , Soil Pollutants/metabolism , Soil/chemistry , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Environ Microbiol ; 14(5): 1171-81, 2012 May.
Article in English | MEDLINE | ID: mdl-22296107

ABSTRACT

An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.


Subject(s)
Benzene/metabolism , Peptococcaceae/physiology , Anaerobiosis , Burkholderiaceae/metabolism , Burkholderiaceae/physiology , Chlorates/metabolism , Nitrates/metabolism , Peptococcaceae/metabolism , Rhodocyclaceae/metabolism , Rhodocyclaceae/physiology , Sulfates/metabolism
8.
FEMS Microbiol Ecol ; 74(1): 72-82, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20618856

ABSTRACT

River systems are exposed to anthropogenic disturbances, including chemical pollution and eutrophication. This may affect the phylogenetic diversity as well as the abundance of various functional groups within sediment-associated microbial communities. To address such potential effects, mesocosms filled with Ebro delta sediment covered with river water were exposed to chlorinated organic compounds or to a high nutrient concentration as used for fertilization. Changes in the abundance of selected functional microbial groups, i.e. total aerobes, nitrate, sulfate and iron reducers, organohalide-respiring microorganisms as well as methanogens, were examined using culture-dependent most probable number and culture-independent PCR methods targeting phylogenetic as well as functional gene markers. It was concluded that the abundance of functional groups was neither affected by pollution with 1,2-dichloroethane and tetrachloroethene nor by elevated nutrient loads, although changes in the bacterial community composition were observed using 16S rRNA gene-targeted fingerprint techniques. This study reinforced the notion that complementary culture-dependent and molecular methods, focusing on different fractions of the microbial community (cultivable, active or total), should be used in combination for a comprehensive description of phylogenetic diversity and functional potential.


Subject(s)
Bacteria/classification , Biota , Geologic Sediments/microbiology , Rivers/microbiology , Water Pollution, Chemical , Bacteria/genetics , DNA Fingerprinting , DNA, Bacterial/genetics , Ethylene Dichlorides/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Spain , Tetrachloroethylene/analysis
9.
Appl Environ Microbiol ; 76(3): 843-50, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20008170

ABSTRACT

Quantitative analysis of genes that code for Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenases TceA, VcrA, and BvcA was done on groundwater sampled from 150 monitoring wells spread over 11 chlorinated ethene polluted European locations. Redundancy analysis was used to relate molecular data to geochemical conditions. Dehalococcoides 16S rRNA- and vinyl chloride (VC)-reductase genes were present at all tested locations in concentrations up to 10(6) gene copies per ml of groundwater. However, differences between and also within locations were observed. Variation in Dehalococcoides 16S rRNA gene copy numbers were most strongly correlated to dissolved organic carbon concentration in groundwater and to conditions appropriate for biodegradation of chlorinated ethenes (U.S. Environmental Protection Agency score). In contrast, vcrA gene copy numbers correlated most significantly to VC and chlorinated ethene concentrations. Interestingly, bvcA and especially tceA were more correlated with oxidizing conditions. In groundwater microcosms, dechlorination of 1 mM VC was correlated to an increase of vcrA and/or bvcA gene copies by 2 to 4 orders of magnitude. Interestingly, in 34% of the monitoring wells and in 40% of the active microcosms, the amount of individual VC-reductase gene copies exceeded that of Dehalococcoides 16S rRNA gene copies. It is concluded that the geographical distribution of the genes was not homogeneous, depending on the geochemical conditions, whereby tceA and bvcA correlated to more oxidized conditions than Dehalococcoides 16S rRNA and vcrA. Because the variation in VC-reductase gene numbers was not directly correlated to variation in Dehalococcoides spp., VC-reductase genes are better monitoring parameters for VC dechlorination capacity than Dehalococcoides spp.


Subject(s)
Chloroflexi/genetics , Oxidoreductases/genetics , RNA, Ribosomal, 16S/genetics , Vinyl Chloride/metabolism , Water Pollutants, Chemical/metabolism , Bacterial Typing Techniques , Biodegradation, Environmental , Chloroflexi/classification , Chloroflexi/metabolism , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Environmental Monitoring , Ethylenes/metabolism , Fresh Water , Gene Dosage , Genes, Bacterial , Genes, rRNA , Halogenation , Oxidoreductases/metabolism , RNA, Bacterial/analysis , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Water Microbiology
10.
Water Res ; 43(13): 3207-16, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19501382

ABSTRACT

Insight into the pathways of biodegradation and external factors controlling their activity is essential in adequate environmental risk assessment of chlorinated aliphatic hydrocarbon pollution. This study focuses on biodegradation of 1,2-dichloroethane (1,2-DCA) in microcosms containing sediment sourced from the European rivers Ebro, Elbe and Danube. Biodegradation was studied under different redox conditions. Reductive dechlorination of 1,2-DCA was observed with Ebro and Danube sediment with chloroethane, or ethene, respectively, as the major dechlorination products. Different reductively dehalogenating micro-organisms (Dehalococcoides spp., Dehalobacter spp., Desulfitobacterium spp. and Sulfurospirillum spp.) were detected by 16S ribosomal RNA gene-targeted PCR and sequence analyses of 16S rRNA gene clone libraries showed that only 2-5 bacterial orders were represented in the microcosms. With Ebro and Danube sediment, indications for anaerobic oxidation of 1,2-DCA were obtained under denitrifying or iron-reducing conditions. No biodegradation of 1,2-DCA was observed in microcosms with Ebro sediment under the different tested redox conditions. This research shows that 1,2-DCA biodegradation capacity was present in different river sediments, but not in the water phase of the river systems and that biodegradation potential with associated microbial communities in river sediments varies with the geochemical properties of the sediments.


Subject(s)
Bacteria/metabolism , Ethylene Dichlorides/metabolism , Geologic Sediments/microbiology , Rivers/microbiology , Bacteria/classification , Biodegradation, Environmental , Environmental Monitoring , Geologic Sediments/chemistry , Oxidation-Reduction , RNA, Ribosomal, 16S/metabolism , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...