Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Br J Clin Pharmacol ; 89(9): 2888-2901, 2023 09.
Article in English | MEDLINE | ID: mdl-37160686

ABSTRACT

INTRODUCTION: Off-label drug use in the paediatric population is common, and the lack of high-quality efficacy studies poses patients at risk for failing pharmacotherapy. Next to efficacy studies, pharmacokinetic (PK) studies are increasingly used to inform paediatric dose selection. As resources for paediatric trials are limited, we aimed to summarize existing PK and efficacy studies to identify knowledge gaps in available evidence supporting paediatric dosing recommendations, thereby taking paediatric cardiovascular drugs as proof of concept. METHODS: For each cardiovascular drug, paediatric indication and prespecified age group, together comprising one record, the authorized state was assessed. Next, for off-label records, the highest level of evidence was scored. High-quality efficacy studies were defined as meta-analysis or randomized controlled trials. Other comparative research, noncomparative research or consensus-based expert opinions were considered low quality. The level of evidence for PK studies was scored per drug and per age group, but regardless of indication. RESULTS: A total of 58 drugs included 417 records, of which 279 (67%) were off-label. Of all off-label records, the majority (81%) were not supported by high-quality efficacy studies, but for 140 of these records (62%) high-quality PK studies were available. CONCLUSION: We demonstrated that for the majority of off-label cardiovascular drugs, only low-quality efficacy studies were available. However, high-quality PK studies were frequently available. Combining these PK data with extrapolation of efficacy data from adults may help to close the current information gap and prioritize the drugs for which clinical studies and safety data are urgently needed.


Subject(s)
Cardiovascular Agents , Child , Humans , Cardiovascular Agents/therapeutic use , Drug Labeling , Off-Label Use
2.
Children (Basel) ; 10(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37238396

ABSTRACT

Neonatal drug information (DI) is essential for safe and effective pharmacotherapy in (pre)term neonates. Such information is usually absent from drug labels, making formularies a crucial part of the neonatal clinician's toolbox. Several formularies exist worldwide, but they have never been fully mapped or compared for content, structure and workflow. The objective of this review was to identify neonatal formularies, explore (dis)similarities, and raise awareness of their existence. Neonatal formularies were identified through self-acquaintance, experts and structured search. A questionnaire was sent to all identified formularies to provide details on formulary function. An original extraction tool was employed to collect DI from the formularies on the 10 most commonly used drugs in pre(term) neonates. Eight different neonatal formularies were identified worldwide (Europe, USA, Australia-New Zealand, Middle East). Six responded to the questionnaire and were compared for structure and content. Each formulary has its own workflow, monograph template and style, and update routine. Focus on certain aspects of DI also varies, as well as the type of initiative and funding. Clinicians should be aware of the various formularies available and their differences in characteristics and content to use them properly for the benefit of their patients.

3.
Neonatology ; 120(2): 196-207, 2023.
Article in English | MEDLINE | ID: mdl-36646065

ABSTRACT

Many drugs are used off-label in neonates which leads to large variation in prescribed drugs and dosages in neonatal intensive care units (NICUs). The NeoDose project aimed to develop best evidence dosing recommendations (DRs) for term and preterm neonates using a three-step approach: 1) drug selection, 2) establishing consensus-based DRs, and 3) establishing best evidence DRs. METHODS: The selection of drugs was based on frequency of prescribing, availability of a neonatal DR in the Dutch Pediatric Formulary, and the labeling status. Clinical need, pharmacological diversity, and Working Group Neonatal Pharmacology (WGNP) preferences were also taken into account, using a consensus-based approach. For the second step, we requested local dosing protocols from all ten Dutch NICUs and established consensus-based DRs within the WGNP, consisting of neonatologists, clinical pharmacologists, hospital pharmacists, and researchers. In the third step, the consensus-based DRs were compared with the available literature, using standardized PubMed searches. RESULTS: Fourteen drugs were selected for which the local dosing protocols were collected. These protocols differed mostly in total daily dose, dosing frequency, and/or route of administration. Strikingly, almost none of the dosing protocols of these 14 drugs distinguished between preterm and term neonates. The working group established consensus-based DRs, which after literature review needed modification in 56%, mainly in terms of a dose increase. Finally, we established 37 best evidence DRs, 22 for preterm and 15 for term neonates, representing 19 indications. CONCLUSION: This project showed the successful three-step approach for the development of DRs for term and preterm neonates.


Subject(s)
Pharmaceutical Preparations , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Pharmaceutical Preparations/administration & dosage , Drug Dosage Calculations , Off-Label Use , Netherlands
4.
Clin Pharmacol Ther ; 112(6): 1243-1253, 2022 12.
Article in English | MEDLINE | ID: mdl-36069288

ABSTRACT

Many drugs are still prescribed off-label to the pediatric population. Although off-label drug use not supported by high level of evidence is potentially harmful, a comprehensive overview of the quality of the evidence pertaining off-label drug use in children is lacking. The Dutch Pediatric Formulary (DPF) provides best evidence-based dosing guidelines for drugs used in children. For each drug-indication-age group combination-together compiling one record-we scored the highest available level of evidence: labeled use, systematic review or meta-analysis, randomized controlled trial (RCT), comparative research, noncomparative research, or consensus-based expert opinions. For records based on selected guidelines, the original sources were not reviewed. These records were scored as guideline. A total of 774 drugs were analyzed comprising a total of 6,426 records. Of all off-label records (n = 2,718), 14% were supported by high quality evidence (4% meta-analysis or systematic reviews, 10% RCTs of high quality), 20% by comparative research, 14% by noncomparative research, 37% by consensus-based expert opinions, and 15% by selected guidelines. Fifty-eight percent of all records were authorized, increasing with age from 30% in preterm neonates (n = 110) up to 64% in adolescents (n = 1,630). Many have advocated that off-label use is only justified when supported by a high level of evidence. We show that this prerequisite would seriously limit available drug treatment for children as the underlying evidence is low across ages and drug classes. Our data identify the drugs and therapeutic areas for which evidence is clearly missing and could drive the global research agenda.


Subject(s)
Drug Labeling , Off-Label Use , Adolescent , Child , Humans , Infant, Newborn , Consensus , Ethnicity
5.
Paediatr Drugs ; 24(3): 247-257, 2022 May.
Article in English | MEDLINE | ID: mdl-35344192

ABSTRACT

BACKGROUND: Dexmedetomidine is currently off-label for use in pediatric clinical care worldwide. Nevertheless, it is frequently prescribed to pediatric patients as premedication prior to induction of anesthesia or for procedural sedation. There is ample literature on the pharmacokinetics, efficacy and safety of dexmedetomidine in this vulnerable patient population, but there is a general lack of consensus on dosing. In this project, we aimed to use the standardized workflow of the Dutch Pediatric Formulary to establish best evidence-based pediatric dosing guidelines for dexmedetomidine as premedication and for procedural sedation. METHOD: The available literature on dexmedetomidine in pediatrics was reviewed in order to address the following three questions: (1) What is the right dose? (2) What is known about efficacy? (3) What is known about safety? Relevant literature was compiled into a risk-benefit analysis document. A team of clinical experts critically appraised the analysis and the proposed dosing recommendations. RESULTS: Dexmedetomidine is most commonly administered via the intravenous or intranasal route. Clearance is age dependent, warranting higher doses in infants to reach similar exposure as in adults. Dexmedetomidine use results in satisfactory sedation at parent separation, adequate sedation and a favorable recovery profile. The safety profile is good and comparable to adults, with dose-related hemodynamic effects. CONCLUSION: Following the structured approach of the Dutch Pediatric Formulary, best evidence-based dosing recommendations were proposed for dexmedetomidine, used as premedication prior to induction of anesthesia (intranasal dose) and for procedural sedation (intranasal and intravenous dose) in pediatric patients.


Subject(s)
Anesthesia , Dexmedetomidine , Pediatrics , Administration, Intranasal , Child , Dexmedetomidine/adverse effects , Humans , Hypnotics and Sedatives/adverse effects , Infant , Premedication/methods
6.
Ned Tijdschr Geneeskd ; 1652021 07 01.
Article in Dutch | MEDLINE | ID: mdl-34346574

ABSTRACT

The Dutch Medicines Act and the Medical Treatment Contracts Act (WGBO) form the legal framework for off-label prescribing. These acts are complemented with position statements and guidelines of professional organizations. However, this legal framework is not yet sufficiently embedded in daily practice. The explicit translation of the legal conditions into practical stepwise guidance can therefore provide important guidance when prescribing off-label. This article describes a step-by-step guide for responsible off-label prescribing. The step-by-step guide ensures that decisions about off-label use of drugs are made based on a deliberate and explicit consideration of the unmet medical need and alternative treatment strategies against the potential risks and benefits for the individual patient. In addition, the step-by-step guide ensures the correct provision of information to patients. In this way, the step-by-step guide enables the doctor to meet the regulatory requirements on the off-label prescription of drugs. In addition, we need better information provision on off-label use and professional consensus on information and consent obligation in order to be able to prescribe even more effectively off-label.


Subject(s)
Off-Label Use , Physicians , Humans
7.
Clin Pharmacol Ther ; 110(4): 952-965, 2021 10.
Article in English | MEDLINE | ID: mdl-34145575

ABSTRACT

A drug is granted a license for use after a thorough assessment of risks and benefits based on high-quality scientific proof of its efficacy and safety. Many drugs that are relevant to children are not licensed for use in this population implying that a thorough assessment of risks and benefits in the pediatric population has not been made at all, implying a negative risk-benefit balance in children, or implying insufficient information to establish the risk-benefit balance. Use of drugs without positive assessment of risks and benefits exposes children to potential lack of efficacy, unknown toxicity, and harm. To aid guideline committees and individual prescribers, we here present a tutorial of the Benefit and Risk Assessment for Off-label use (BRAvO) decision framework. This pragmatic framework offers a structured assessment of benefits and risks of off-label drug use, including a clinical pharmacological based approach to age-appropriate dose selection. As proof of concept and to illustrate the practical use, we have applied the framework to assess benefits and risks of off-label use of ondansetron for gastroenteritis-induced nausea and vomiting. The framework could also guide decisions on off-label use in other special populations (e.g., pregnant women, elderly, obese, or critically ill patients) where off-label drug use is frequent, thereby contributing to effective and safe pharmacotherapy.


Subject(s)
Off-Label Use , Pharmaceutical Preparations , Risk Assessment/methods , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn
9.
Clin Pharmacol Ther ; 108(2): 248-252, 2020 08.
Article in English | MEDLINE | ID: mdl-32320477

ABSTRACT

As chloroquine (CHQ) is part of the Dutch Centre for Infectious Disease Control coronavirus disease 2019 (COVID-19) experimental treatment guideline, pediatric dosing guidelines are needed. Recent pediatric data suggest that existing World Health Organization (WHO) dosing guidelines for children with malaria are suboptimal. The aim of our study was to establish best-evidence to inform pediatric CHQ doses for children infected with COVID-19. A previously developed physiologically-based pharmacokinetic (PBPK) model for CHQ was used to simulate exposure in adults and children and verified against published pharmacokinetic data. The COVID-19 recommended adult dosage regimen of 44 mg/kg total was tested in adults and children to evaluate the extent of variation in exposure. Based on differences in area under the concentration-time curve from zero to 70 hours (AUC0-70h ) the optimal CHQ dose was determined in children of different ages compared with adults. Revised doses were re-introduced into the model to verify that overall CHQ exposure in each age band was within 5% of the predicted adult value. Simulations showed differences in drug exposure in children of different ages and adults when the same body-weight based dose is given. As such, we propose the following total cumulative doses: 35 mg/kg (CHQ base) for children 0-1 month, 47 mg/kg for 1-6 months, 55 mg/kg for 6 months-12 years, and 44 mg/kg for adolescents and adults, not to exceed 3,300 mg in any patient. Our study supports age-adjusted CHQ dosing in children with COVID-19 in order to avoid suboptimal or toxic doses. The knowledge-driven, model-informed dose selection paradigm can serve as a science-based alternative to recommend pediatric dosing when pediatric clinical trial data is absent.


Subject(s)
Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Body Weight , Child , Child, Preschool , Coronavirus Infections/drug therapy , Humans , Infant , Infant, Newborn , Models, Biological , COVID-19 Drug Treatment
10.
Paediatr Drugs ; 22(2): 229-239, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32170636

ABSTRACT

OBJECTIVES: The structured digital dosing guidelines of the web-based Dutch Paediatric Formulary provided the opportunity to develop an integrated paediatric dose calculator. In a simulated setting, we tested the ability of this calculator to reduce calculation errors. METHODS: Volunteer healthcare professionals were allocated to one of two groups, manual calculation versus the use of the dose calculator. Professionals in both groups were given access to a web-based questionnaire with 14 patient cases for which doses had to be calculated. The effect of group allocation on the probability of making a calculation error was determined using generalized estimated equations (GEE) logistic regression analysis. The causes of all the erroneous calculations were evaluated. RESULTS: Seventy-seven healthcare professionals completed the web-based questionnaire: thirty-seven were allocated to the manual group and 40 to the calculator group. Use of the dose calculator resulted in an estimated mean probability of a calculation error of 24.4% (95% CI 16.3-34.8) versus 39.0% (95% CI 32.4-46.1) with use of manual calculation. The mean difference of probability of calculation error between groups was 14.6% (95% CI 3.1-26.2; p = 0.013). In a secondary analysis where calculation error was defined as a 10% or greater deviation from the correct answer, the corresponding figures were 19.5% (95% CI 13-28.2) versus 26.5% (95% CI 21.6-32.1) with a mean difference of 7% between groups (95% CI 2.2-16.3; p = 0.137). Juxtaposition, typo/transcription errors and non-specified errors were more frequent as cause of error in the calculator group; exceeding the maximum dose and wrong correction for age were more frequent in the manual group. The percentage of tenfold errors was 3.1% in the manual group and 3.7% in the calculator group. CONCLUSIONS: Our study shows that the use of a dose calculator as an add-on to a web-based paediatric formulary can reduce calculation errors. Furthermore, it shows that technologies may introduce new errors through transcription errors and wrongly selecting parameters from drop-down lists. Therefore, dosing calculators should be developed and used with special attention for selection and transcription errors.


Subject(s)
Drug Dosage Calculations , Algorithms , Child , Humans , Internet
11.
Front Pharmacol ; 11: 592204, 2020.
Article in English | MEDLINE | ID: mdl-33390970

ABSTRACT

Background: Modeling and simulation is increasingly used to study pediatric pharmacokinetics, but clinical implementation of age-appropriate doses lags behind. Therefore, we aimed to develop model-informed doses using published pharmacokinetic data and a decision framework to adjust dosing guidelines based on these doses, using piperacillin and amikacin in critically ill children as proof of concept. Methods: Piperacillin and amikacin pharmacokinetic models in critically ill children were extracted from literature. Concentration-time profiles were simulated for various dosing regimens for a virtual PICU patient dataset, including the current DPF dose and doses proposed in the studied publications. Probability of target attainment (PTA) was compared between the different dosing regimens. Next, updated dosing recommendations for the DPF were proposed, and evaluated using a new framework based on PK study quality and benefit-risk analysis of clinical implementation. Results: Three studies for piperacillin (critically ill children) and one for amikacin (critically ill pediatric burn patients) were included. Simulated concentration-time profiles were performed for a virtual dataset of 307 critically ill pediatric patients, age range 0.1-17.9 y. PTA for unbound piperacillin trough concentrations >16 mg/L was >90% only for continuous infusion regimens of 400 mg/kg/day vs. 9.7% for the current DPF dose (80 mg/kg/6 h, 30 min infusion). Amikacin PTA was >90% with 20 mg/kg/d, higher than the PTA of the DPF dose of 15 mg/kg/d (63.5%). Using our new decision framework, altered DPF doses were proposed for piperacillin (better PTA with loading dose plus continuous infusion), but not for amikacin (studied and target population were not comparable and risk for toxicity with higher dose). Conclusions: We show the feasibility to develop model-informed dosing guidelines for clinical implementation using existing pharmacokinetic data. This approach could complement literature and consensus-based dosing guidelines for off-label drugs in the absence of stronger evidence to support pediatricians in daily practice.

12.
Arch Dis Child ; 102(4): 357-361, 2017 04.
Article in English | MEDLINE | ID: mdl-27799154

ABSTRACT

As many drugs in paediatrics are used off-label, prescribers face a lack of evidence-based dosing guidelines. A Dutch framework was developed to provide dosing guidelines based on best available evidence from registration data, investigator-initiated research, professional guidelines, clinical experience and consensus. This has clarified the scientific grounds of drug use for children and encouraged uniformity in prescribing habits in the Netherlands. The developed framework and the current content of the Dutch Paediatric Formulary could be used as basis for similar initiatives worldwide, preferably in a concerted effort to ultimately provide children with effective and safe drug therapy.


Subject(s)
Formularies as Topic , Child , Consensus , Drug Administration Schedule , Drug Approval , Evidence-Based Medicine , Humans , Knowledge Bases , Netherlands , Off-Label Use
SELECTION OF CITATIONS
SEARCH DETAIL
...