Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NanoImpact ; 35: 100521, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901707

ABSTRACT

To facilitate Safe and Sustainable by Design (SSbD) strategies during the development of nanomaterials (NMs), quick and easy in vitro assays to test for hazard potential at an early stage of NM development are essential. The formation of reactive oxygen species (ROS) and the induction of oxidative stress are considered important mechanisms that can lead to NM toxicity. In vitro assays measuring oxidative stress are therefore commonly included in NM hazard assessment strategies. The fluorescence-based dichloro-dihydro-fluorescein (DCFH) assay for cellular oxidative stress is a simple and cost-effective assay, making it a good candidate assay for SSbD hazard testing strategies. It is however subject to several pitfalls and caveats. Here, we provide further optimizations to the assay using 5-(6)-Chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA-AE, referred to as DCFH probe), known for its improved cell retention. We measured the release of metabolic products of the DCFH probe from cells to supernatant, direct reactions of CM-H2DCFDA-AE with positive controls, and compared the commonly used plate reader-based DCFH assay protocol with fluorescence microscopy and flow cytometry-based protocols. After loading cells with DCFH probe, translocation of several metabolic products of the DCFH probe to the supernatant was observed in multiple cell types. Translocated DCFH products are then able to react with test substances including positive controls. Our results also indicate that intracellularly oxidized fluorescent DCF is able to translocate from cells to the supernatant. In either way, this will lead to a fluorescent supernatant, making it difficult to discriminate between intra- and extra-cellular ROS production, risking misinterpretation of possible oxidative stress when measuring fluorescence on a plate reader. The use of flow cytometry instead of plate reader-based measurements resolved these issues, and also improved assay sensitivity. Several optimizations of the flow cytometry-based DCFH ISO standard (ISO/TS 19006:2016) were suggested, including loading cells with DCFH probe before incubation with the test materials, and applying an appropriate gating strategy including live-death staining, which was not included in the ISO standard. In conclusion, flow cytometry- and fluorescence microscopy-based read-outs are preferred over the classical plate reader-based read-out to assess the level of intracellular oxidative stress using the cellular DCFH assay.

2.
NanoImpact ; 35: 100513, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821170

ABSTRACT

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.

3.
Regul Toxicol Pharmacol ; 149: 105615, 2024 May.
Article in English | MEDLINE | ID: mdl-38555098

ABSTRACT

RIVM convened a workshop on the use of New Approach Methodologies (NAMs) for the ad hoc human health risk assessment of food and non-food products. Central to the workshop were two case studies of marketed products with a potential health concern: the botanical Tabernanthe iboga which is used to facilitate mental or spiritual insight or to (illegally) treat drug addiction and is associated with cardiotoxicity, and dermal creams containing female sex hormones, intended for use by perimenopausal women to reduce menopause symptoms without medical supervision. The workshop participants recognized that data from NAM approaches added valuable information for the ad hoc risk assessment of these products, although the available approaches were inadequate to derive health-based guidance values. Recommendations were provided on how to further enhance and implement NAM approaches in regulatory risk assessment, specifying both scientific and technical aspects as well as stakeholder engagement aspects.


Subject(s)
Consumer Product Safety , Humans , Risk Assessment
4.
Drug Deliv Transl Res ; 13(11): 2693-2703, 2023 11.
Article in English | MEDLINE | ID: mdl-37210426

ABSTRACT

The ability to track therapeutic cells upon administration to the patient is of interest to both regulators and developers of cell therapy. The European Commission Horizon2020 project nTRACK from 2017-2022 aimed to develop a multi-modal nano-imaging agent to track therapeutic cells during development of a cell therapy. As part of this project, we investigated the regulatory pathway involved for such a product if marketed as a stand-alone product. An important regulatory hurdle appeared to be the appropriate regulatory classification of the nTRACK nano-imaging agent, as neither the definition for medicinal product nor the definition for medical device appeared to be a good fit for the purpose of the product and we were confronted with diverging views of competent authorities on the classification. As a consequence, the information requirements to fulfill before conducting a First in Human trial are not evident and can only be decided upon by closely collaborating and communicating with the relevant authorities throughout the development of the product. Moreover, standard test methods for demonstrating the quality and safety of a medicinal product or medical device are not always suitable for nanomaterials such as the nTRACK nano-imaging agent. Regulatory agility is therefore a great need to prevent delay of promising medical innovations, although regulatory guidance on these products will likely improve with more experience. In this article, we outline the lessons learnt related to the regulatory process of the nTRACK nano-imaging agent for tracking therapeutic cells and offer recommendations to both regulators and developers of similar products.


Subject(s)
Nanostructures , Humans , Pharmaceutical Preparations , Cell- and Tissue-Based Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...